Publications
Found 3 results
Filters: Author is M.C.N. Oliveira [Clear All Filters]
“Overexpression of the activated form of the AtAREB1 gene (AtAREB1ΔQT) improves soybean responses to water deficit”, vol. 13, pp. 6272-6286, 2014.
, “Transcription factors expressed in soybean roots under drought stress”, vol. 10, pp. 3689-3701, 2011.
,
Agarwal P, Arora R, Ray S, Singh AK, et al. (2007). Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol. Biol. 65: 467-485.
http://dx.doi.org/10.1007/s11103-007-9199-y
PMid:17610133
Andrade AB (2006). Inibição do Crescimento de Raízes de Soja pela Mimosina: Lignificação e Enzimas Relacionadas. Thesis, Universidade Estadual de Maringá, Maringá.
Chen BJ, Wang Y, Hu YL, Wu Q, et al. (2005). Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci. 168: 493-500.
http://dx.doi.org/10.1016/j.plantsci.2004.09.013
Conab - Companhia Nacional de Abastecimento (2005). Available at [http://www.conab.gov.br]. Accessed......... dos Santos WD, Ferrarese ML, Nakamura CV, Mourao KS, et al. (2008). Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J. Chem. Ecol. 34: 1230-1241.
Du H, Zhang L, Liu L, Tang XF, et al. (2009). Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry 74: 1-11.
PMid:19232042
Dubos C, Stracke R, Grotewold E, Weisshaar B, et al. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15: 573-581.
http://dx.doi.org/10.1016/j.tplants.2010.06.005
PMid:20674465
Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at [http://www.cnpso.embrapa.br]. Accessed....... Fan L, Linker R, Gepstein S, Tanimoto E, et al. (2006). Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol. 140: 603-612.
Fornale S, Sonbol FM, Maes T, Capellades M, et al. (2006). Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol. Biol. 62: 809-823.
http://dx.doi.org/10.1007/s11103-006-9058-2
PMid:16941210
Guo Y and Gan S (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46: 601-612.
http://dx.doi.org/10.1111/j.1365-313X.2006.02723.x
PMid:16640597
Hu Wen-Jing, Harding SA, Lung J, Popko JL, et al. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17: 808-812.
http://dx.doi.org/10.1038/11758
PMid:10429249
Jain D, Roy N and Chattopadhyay D (2009). CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One 4: e5154.
http://dx.doi.org/10.1371/journal.pone.0005154
PMid:19365545 PMCid:2664467
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, et al. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111.
http://dx.doi.org/10.1016/S1360-1385(01)02223-3
Kizis D, Lumbreras V and Pagès M (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187-189.
http://dx.doi.org/10.1016/S0014-5793(01)02460-7
Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, et al. (2008). NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20: 2631-2642.
http://dx.doi.org/10.1105/tpc.108.060160
PMid:18849494 PMCid:2590734
Liu JX, Srivastava R and Howell SH (2008). Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ. 31: 1735-1743.
http://dx.doi.org/10.1111/j.1365-3040.2008.01873.x
PMid:18721266
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
Nijhawan A, Jain M, Tyagi AK and Khurana JP (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146: 333-350.
http://dx.doi.org/10.1104/pp.107.112821
PMid:18065552 PMCid:2245831
Olsen AN, Ernst HA, Leggio LL and Skriver K (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10: 79-87.
http://dx.doi.org/10.1016/j.tplants.2004.12.010
PMid:15708345
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, et al. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734-2746.
http://dx.doi.org/10.1104/pp.104.046599
PMid:15333755 PMCid:523337
Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010.
http://dx.doi.org/10.1104/pp.103.021683
PMid:12805628 PMCid:167038
Seo PJ, Xiang F, Qiao M, Park JY, et al. (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol. 151: 275-289.
http://dx.doi.org/10.1104/pp.109.144220
PMid:19625633 PMCid:2735973
Shinozaki K (2004) Arabidopsis Cys2/His2-Type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734-2746.
http://dx.doi.org/10.1104/pp.104.046599
PMid:15333755 PMCid:523337
Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.
http://dx.doi.org/10.1093/jxb/erl164
PMid:17075077
Stolf-Moreira R, Lemos EGM, Carareto AL, Marcondes J, et al. (2011a). Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol. Biol. Rep. 29: 19-34.
http://dx.doi.org/10.1007/s11105-010-0203-3
Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, et al. (2011b). Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesq. Agropec. Bras. 46: 58-65.
http://dx.doi.org/10.1590/S0100-204X2011000100008
Sugano S, Kaminaka H, Rybka Z, Catala R, et al. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 36: 830-841.
http://dx.doi.org/10.1046/j.1365-313X.2003.01924.x
PMid:14675448
Sun SJ, Guo SQ, Yang X, Bao YM, et al. (2010). Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J. Exp. Bot. 61: 2807-2818.
http://dx.doi.org/10.1093/jxb/erq120
PMid:20460361 PMCid:2882275
Takatsuji H (1999). Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol. Biol. 39: 1073-1078.
http://dx.doi.org/10.1023/A:1006184519697
PMid:10380795
Tian ZD, Zhang Y, Liu J and Xie CH (2010). Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol. 12: 689-697.
http://dx.doi.org/10.1111/j.1438-8677.2009.00276.x
PMid:20701691
Wilkins O, Nahal H, Foong J, Provart NJ, et al. (2009). Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 149: 981-993.
http://dx.doi.org/10.1104/pp.108.132795
PMid:19091872 PMCid:2633813
Xu S, Wang X and Chen J (2007). Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His- 2-type transcription factor involved in drought and salt stress. Plant Cell Rep. 26: 497-506.
http://dx.doi.org/10.1007/s00299-006-0248-9
PMid:17024447
Yoshimura K, Masuda A, Kuwano M, Yokota A, et al. (2008). Programmed proteome response for drought avoidance/ tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 49: 226-241.
http://dx.doi.org/10.1093/pcp/pcm180
PMid:18178965
“Soybean physiology and gene expression during drought”, vol. 9, pp. 1946-1956, 2010.
, Aharon R, Shahak Y, Wininger S, Bendov R, et al. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15: 439-447.
http://dx.doi.org/10.1105/tpc.009225
PMid:12566583 PMCid:141212
Bayoumi TY, Eid MH and Metwali EM (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 7: 2341-2352.
Bocca SN, Magioli C, Mangeon A, Junqueira RM, et al. (2005). Survey of glycine-rich proteins (GRPs) in the Eucalyptus expressed sequence tag database (ForEST). Genet. Mol. Biol. 28: 608-624.
http://dx.doi.org/10.1590/S1415-47572005000400016
Boeger AR and Wisniewski C (2002). Leaf structure and nutrient contents of six tree species from different successional stages at coastal plain from Paraná State, Brazil. Iheringia 57: 243-262.
Bohnert HJ, Nelson DE and Jensen RG (1995). Adaptations to environmental stresses. Plant Cell 7: 1099-1111.
PMid:12242400 PMCid:160917
Chiariello NR, Mooney HA and Williams K (1991). Growth, Carbon Allocation and Cost of Plant Tissues. In: Plant Physiologic Ecology: Field Methods and Instrumentation (Pearcey RW, Ehleringer J, Mooney HA and Rundel PW, eds.). Chapman and Hall, New York, 327-365.
Chinnusamy V, Schumaker K and Zhu JK (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55: 225-236.
http://dx.doi.org/10.1093/jxb/erh005
PMid:14673035
Cornic G and Briantais JM (1991). Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178-184.
http://dx.doi.org/10.1007/BF00197786
Downie B, Gurusinghe S, Dahal P, Thacker RR, et al. (2003). Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359.
http://dx.doi.org/10.1104/pp.016386
PMid:12644684 PMCid:166894
Hannah MA, Wiese D, Freund S, Fiehn O, et al. (2006). Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 142: 98-112.
http://dx.doi.org/10.1104/pp.106.081141
PMid:16844837 PMCid:1557609
Hewitt EJ (1963). Mineral Nutrition of Plants in Culture Media. In: Plant Physiology. Vol. III (Steward FC, ed.). Academic Press, New York, 97-133.
Hill AE, Shachar-Hill B and Shachar-Hill Y (2004). What are aquaporins for? J. Membr. Biol. 197: 1-32.
http://dx.doi.org/10.1007/s00232-003-0639-6
PMid:15014915
Huang B and Fry JD (1998). Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci. 38: 1017-1022.
http://dx.doi.org/10.2135/cropsci1998.0011183X003800040022x
Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K and Shinozaki K (2000). A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 123: 553-562.
http://dx.doi.org/10.1104/pp.123.2.553
PMid:10859185 PMCid:59023
Jones HG (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58: 119-130.
http://dx.doi.org/10.1093/jxb/erl118
PMid:16980592
Kron AP, Souza GMR and Ribeiro RV (2008). Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia 67: 43-49.
http://dx.doi.org/10.1590/S0006-87052008000100005
Li XP, Tian AG, Luo GZ, Gong ZZ, et al. (2005). Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor. Appl. Genet. 110: 1355-1362.
http://dx.doi.org/10.1007/s00122-004-1867-6
PMid:15841365
Machado-Filho JA, Campostrini E, Yamanishi OK and Fagundes GR (2006). Seasonal variation of leaf gas exchange in papaya plants grown under field condition. Bragantia 65: 185-196.
Maitra N and Cushman JC (1998). Characterization of a drought-induced soybean cDNA encoding a plant defensin. Plant Physiol. 118: 1536.
Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993.
http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x
PMid:15165189
Maurel C and Chrispeels MJ (2001). Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125: 135-138.
http://dx.doi.org/10.1104/pp.125.1.135
PMid:11154316 PMCid:1539345
Monti A, Brugnoli E, Scartazza A and Amaducci MT (2006). The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). J. Exp. Bot. 57: 1253-1262.
http://dx.doi.org/10.1093/jxb/erj091
PMid:16467409
Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137.
http://dx.doi.org/10.1626/pps.7.129
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, et al. (2004). Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136: 3148-3158.
http://dx.doi.org/10.1104/pp.104.042606
PMid:15466240 PMCid:523375
Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36.
http://dx.doi.org/10.1093/nar/30.9.e36
PMid:11972351 PMCid:113859
Porcel R, Aroca R, Azcon R and Ruiz-Lozano JM (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol. Biol. 60: 389-404.
http://dx.doi.org/10.1007/s11103-005-4210-y
PMid:16514562
Schafleitner R, Gaudin A, Rosales ROG, Aliaga CAA, et al. (2007). Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato. Acta Physiol. Plant. 29: 19-26.
http://dx.doi.org/10.1007/s11738-006-0003-4
Shen YG, Zhang WK, Yan DQ, Du BX, et al. (2003). Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet. 107: 155-161.
PMid:12677404
Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010.
http://dx.doi.org/10.1104/pp.103.021683
PMid:12805628 PMCid:167038
Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.
http://dx.doi.org/10.1093/jxb/erl164
PMid:17075077
Singh K, Foley RC and Onate-Sanchez L (2002). Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436.
http://dx.doi.org/10.1016/S1369-5266(02)00289-3
Stolf R (2007). Identificação e Análise da Expressão de Genes Relacionados com Tolerância à Seca em Soja Através de Microarranjos de DNA e PCR em Tempo Real. Doctoral thesis, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal.
Sung DY, Vierling E and Guy CL (2001). Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800.
http://dx.doi.org/10.1104/pp.126.2.789
PMid:11402207 PMCid:111169
Taji T, Seki M, Satou M, Sakurai T, et al. (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135: 1697-1709.
http://dx.doi.org/10.1104/pp.104.039909
PMid:15247402 PMCid:519083
Tang M, Sun J, Liu Y, Chen F, et al. (2007). Isolation and functional characterization of the JcERF gene, a putative AP2/ EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol. Biol. 63: 419-428.
http://dx.doi.org/10.1007/s11103-006-9098-7
PMid:17103014
Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, et al. (2008). Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 59: 2109-2123.
http://dx.doi.org/10.1093/jxb/ern073
PMid:18535297 PMCid:2413284
Warren CR (2004). The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. J. Exp. Bot. 55: 2313-2321.
http://dx.doi.org/10.1093/jxb/erh239
PMid:15310814
Yamada K, Lim J, Dale JM, Chen H, et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842-846.
http://dx.doi.org/10.1126/science.1088305
PMid:14593172
Yamaguchi-Shinozaki K and Shinozaki K (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10: 88-94.
http://dx.doi.org/10.1016/j.tplants.2004.12.012
PMid:15708346