Publications
Found 11 results
Filters: Author is Z.G. Wang [Clear All Filters]
“Cloning, molecular characterization, and expression pattern of FGF5 in Cashmere goat (Capra hircus)”, vol. 14, pp. 11154-11161, 2015.
, “Silencing FKBP38 gene by siRNA induces activation of mTOR signaling in goat fetal fibroblasts”, vol. 14, pp. 9675-9682, 2015.
, “Swine leukocyte antigen class II genes (SLA-DRA, SLA-DRB1, SLA-DQA, SLA-DQB1) polymorphism and genotyping in Guizhou minipigs”, vol. 14, pp. 15256-15266, 2015.
, “Technological value of SPECT/CT fusion imaging for the diagnosis of lower gastrointestinal bleeding”, vol. 14, pp. 14947-14955, 2015.
, “Association of dietary intake of folate and MTHFR genotype with breast cancer risk”, vol. 13, pp. 5446-5451, 2014.
, “Effects of maintaining intravenous infusion of remifentanil or propofol on anesthesia and palinesthesia during anesthesia and analepsia”, vol. 13, pp. 2865-2872, 2014.
, “Overexpression of protein kinase B/AKT induces phosphorylation of p70S6K and 4E-BP1 in goat fetal fibroblasts”, vol. 13, pp. 9931-9938, 2014.
, “Stable transfection and identification of a hair follicle-specific expression vector of IGFBP-5 in goat fetal fibroblasts”, vol. 13, pp. 1885-1892, 2014.
, “Molecular cytogenetic characterization of the Aegilops biuncialis karyotype”, vol. 12. pp. 683-692, 2013.
, Badaeva ED (2002). Evaluation of phylogenetic relationships between five polyploid Aegilops L. species of the U-genome cluster by means of chromosomal analysis. Genetika 38: 799-811.
PMid:12138779
Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, et al. (2004). Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246: 45-76.
http://dx.doi.org/10.1007/s00606-003-0072-4
Bedbrook JR, Jones J, O'Dell M, Thompson RD, et al. (1980). A molecular description of telometic heterochromatin in secale species. Cell 19: 545-560.
http://dx.doi.org/10.1016/0092-8674(80)90529-2
Dhaliwal HS, Harjit-Singh and William M (2002). Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126: 153-159.
http://dx.doi.org/10.1023/A:1016312723040
Friebe B and Heun M (1989). C-banding pattern and powdery mildew resistance of Triticum ovatum and four T. aestivum - T. ovatum chromosome addition lines. Theor. Appl. Genet. 78: 417-424.
http://dx.doi.org/10.1007/BF00265306
Friebe B, Mukai Y and Gill BS (1992a). C-banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome 35: 192-199.
http://dx.doi.org/10.1139/g92-030
Friebe B, Schubert V, Blüthner W and Hammer K (1992b). C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum - Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 83: 589-596.
http://dx.doi.org/10.1007/BF00226902
Friebe B, Jiang J, Tuleen N and Gill BS (1995). Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 90: 150-156.
http://dx.doi.org/10.1007/BF00221010
Friebe B, Badaeva ED, Kammer K and Gill BS (1996). Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst. Evol. 202: 199-210.
http://dx.doi.org/10.1007/BF00983382
Friebe B, Qi LL, Nasuda S, Zhang P, et al. (2000). Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 101: 51-58.
http://dx.doi.org/10.1007/s001220051448
Gerlach WL and Bedbrook JR (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7: 1869-1885.
http://dx.doi.org/10.1093/nar/7.7.1869
PMid:537913 PMCid:342353
Gerlach WL and Dyer TA (1980). Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8: 4851-4865.
http://dx.doi.org/10.1093/nar/8.21.4851
PMid:7443527 PMCid:324264
Gill BS and Kimber G (1974). Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. U. S. A. 71: 4086- 4090.
http://dx.doi.org/10.1073/pnas.71.10.4086
PMid:16592188 PMCid:434333
Makkouk K, Ghulam W and Comeau A (1994). Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant Sci. 74: 631-634.
http://dx.doi.org/10.4141/cjps94-113
McIntyre CL, Pereira S, Moran LB and Appels R (1990). New secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33: 635-640.
http://dx.doi.org/10.1139/g90-094
PMid:2262137
Molnár I, Gáspár L, Sárvári É, Dulai S, et al. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31: 1149-1159.
http://dx.doi.org/10.1071/FP03143
Mukai Y, Nakahara Y and Yamamoto M (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489-494.
http://dx.doi.org/10.1139/g93-067
PMid:18470003
Nagy ED, Molnar-Lang M, Linc G and Lang L (2002). Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45: 1238- 1247.
http://dx.doi.org/10.1139/g02-068
PMid:12502270
Rayburn AL and Gill BS (1986). Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4: 102-109.
http://dx.doi.org/10.1007/BF02732107
Resta P, Zhang HB, Dubcovsky J and Dvorak J (1996). The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am. J. Bot. 83: 1556-1565.
http://dx.doi.org/10.2307/2445829
Riley R, Chapman V and Johnson R (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383-384.
http://dx.doi.org/10.1038/217383a0
Schneider A, Linc G, Molnar I and Molnar-Lang M (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat - Aegilops biuncialis disomic addition lines. Genome 48: 1070- 1082.
http://dx.doi.org/10.1139/g05-062
PMid:16391676
van Slageren MWSJ (1994). Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): A Revision of All Taxa Closely Related to Wheat, Excluding Wild Triticum Species, with Notes on Other Genera in the Tribe Triticcae, Especially Triticum: Wageningen Agricultural University, Wageningen.
Wang ZG, An TG, Li JM, Marta ML, et al. (2004). Fluorescent in situ hybridization analysis of rye chromatin in the background of "Xiaoyan No. 6". Acta Bot. Sin. 46: 436-442.
“Phenotypic correction and stable expression of factor VIII in hemophilia A mice by embryonic stem cell therapy”, vol. 12, pp. 1511-1521, 2013.
, “Resistance to lipopolysaccharide-induced endotoxic shock in heterozygous Zfp191 gene-knockout mice”, vol. 10, pp. 3712-3721, 2011.
,
Albanese V, Biguet NF, Kiefer H, Bayard E, et al. (2001). Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum. Mol. Genet. 10: 1785-1792.
http://dx.doi.org/10.1093/hmg/10.17.1785
PMid:11532988
Edelstein LC and Collins T (2005). The SCAN domain family of zinc finger transcription factors. Gene 359: 1-17.
http://dx.doi.org/10.1016/j.gene.2005.06.022
PMid:16139965
Halees AS, Leyfer D and Weng Z (2003). PromoSer: A large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res. 31: 3554-3559.
http://dx.doi.org/10.1093/nar/gkg549
PMid:12824364 PMCid:168956
Han ZG, Zhang QH, Ye M, Kan LX, et al. (1999). Molecular cloning of six novel Kruppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. J. Biol. Chem. 274: 35741-35748.
http://dx.doi.org/10.1074/jbc.274.50.35741
PMid:10585455
Harper J, Yan L, Loureiro RM, Wu I, et al. (2007). Repression of vascular endothelial growth factor expression by the zinc finger transcription factor ZNF24. Cancer Res. 67: 8736-8741.
http://dx.doi.org/10.1158/0008-5472.CAN-07-1617
PMid:17875714
Khalfallah O, Faucon-Biguet N, Nardelli J, Meloni R, et al. (2008). Expression of the transcription factor Zfp191 during embryonic development in the mouse. Gene Expr. Patterns 8: 148-154.
http://dx.doi.org/10.1016/j.gep.2007.11.002
PMid:18096443
Khalfallah O, Ravassard P, Lagache CS, Fligny C, et al. (2009). Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 27: 1643-1653.
http://dx.doi.org/10.1002/stem.88
PMid:19544452
Kyriakis JM and Avruch J (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81: 807-869.
PMid:11274345
Lee JC, Kassis S, Kumar S, Badger A, et al. (1999). p38 mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol. Ther. 82: 389-397.
http://dx.doi.org/10.1016/S0163-7258(99)00008-X
Li J, Chen X, Yang H, Wang S, et al. (2006). The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp. Cell Res. 312: 3990-3998.
http://dx.doi.org/10.1016/j.yexcr.2006.08.020
PMid:17064688
Li J, Chen X, Gong X, Liu Y, et al. (2009). A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor. BMC Genomics 10: 241.
http://dx.doi.org/10.1186/1471-2164-10-241
PMid:19463170 PMCid:2694838
Lu D, Searles MA and Klug A (2003). Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426: 96-100.
http://dx.doi.org/10.1038/nature02088
PMid:14603324
Mannel DN (2007). Advances in sepsis research derived from animal models. Int. J. Med. Microbiol. 297: 393-400.
http://dx.doi.org/10.1016/j.ijmm.2007.03.005
PMid:17452126
Manthey CL, Wang SW, Kinney SD and Yao Z (1998). SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J. Leukoc. Biol. 64: 409-417.
PMid:9738669
Moriyama M, Matsukawa A, Kudoh S, Takahashi T, et al. (2006). The neuropeptide neuromedin U promotes IL-6 production from macrophages and endotoxin shock. Biochem. Biophys. Res. Commun. 341: 1149-1154.
http://dx.doi.org/10.1016/j.bbrc.2006.01.075
PMid:16466693
Noll L, Peterson FC, Hayes PL, Volkman BF, et al. (2008). Heterodimer formation of the myeloid zinc finger 1 SCAN domain and association with promyelocytic leukemia nuclear bodies. Leuk. Res. 32: 1582-1592.
http://dx.doi.org/10.1016/j.leukres.2008.03.024
PMid:18472161
Prost JF, Negre D, Cornet-Javaux F, Cortay JC, et al. (1999). Isolation, cloning, and expression of a new murine zinc finger encoding gene. Biochim. Biophys. Acta 1447: 278-283.
http://dx.doi.org/10.1016/S0167-4781(99)00157-8
Remick DG and Ward PA (2005). Evaluation of endotoxin models for the study of sepsis. Shock 24 (Suppl 1): 7-11.
http://dx.doi.org/10.1097/01.shk.0000191384.34066.85
PMid:16374366
Roth K, Chen WM and Lin TJ (2008). Positive and negative regulatory mechanisms in high-affinity IgE receptor-mediated mast cell activation. Arch. Immunol. Ther. Exp. 56: 385-399.
http://dx.doi.org/10.1007/s00005-008-0041-2
PMid:19082920
Silvestri C, Narimatsu M, von B, I, Liu Y, et al. (2008). Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell 14: 411-423.
http://dx.doi.org/10.1016/j.devcel.2008.01.004
PMid:18331719
Sriskandan S and Altmann DM (2008). The immunology of sepsis. J. Pathol. 214: 211-223.
http://dx.doi.org/10.1002/path.2274
PMid:18161754
Tarca AL, Draghici S, Khatri P, Hassan SS, et al. (2009). A novel signaling pathway impact analysis. Bioinformatics 25: 75-82.
http://dx.doi.org/10.1093/bioinformatics/btn577
PMid:18990722 PMCid:2732297
van der Poll T and van Deventer SJ (1999). Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North Am. 13: 413-26, ix.
http://dx.doi.org/10.1016/S0891-5520(05)70083-0
Wang H, Sun R, Liu G, Yao M, et al. (2008). Characterization of the target DNA sequence for the DNA-binding domain of zinc finger protein 191. Acta Biochim. Biophys. Sin. 40: 704-710.
Watanabe E, Hirasawa H, Oda S, Matsuda K, et al. (2005). Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit. Care Med. 33: 89-97.
http://dx.doi.org/10.1097/01.CCM.0000150025.79100.7D
PMid:15644653