Found 11 results
Filters: Author is Z.G. Wang  [Clear All Filters]
J. Wang, Zhang, W., Zhao, H., Li, F. R., Wang, Z. G., Ji, J., Zhang, X. Q., Wang, D. W., and Li, J. M., Molecular cytogenetic characterization of the Aegilops biuncialis karyotype, vol. 12. pp. 683-692, 2013.
Badaeva ED (2002). Evaluation of phylogenetic relationships between five polyploid Aegilops L. species of the U-genome cluster by means of chromosomal analysis. Genetika 38: 799-811. PMid:12138779   Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, et al. (2004). Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246: 45-76.   Bedbrook JR, Jones J, O'Dell M, Thompson RD, et al. (1980). A molecular description of telometic heterochromatin in secale species. Cell 19: 545-560.   Dhaliwal HS, Harjit-Singh and William M (2002). Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126: 153-159.   Friebe B and Heun M (1989). C-banding pattern and powdery mildew resistance of Triticum ovatum and four T. aestivum - T. ovatum chromosome addition lines. Theor. Appl. Genet. 78: 417-424.   Friebe B, Mukai Y and Gill BS (1992a). C-banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome 35: 192-199.   Friebe B, Schubert V, Blüthner W and Hammer K (1992b). C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum - Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 83: 589-596.   Friebe B, Jiang J, Tuleen N and Gill BS (1995). Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 90: 150-156.   Friebe B, Badaeva ED, Kammer K and Gill BS (1996). Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst. Evol. 202: 199-210.   Friebe B, Qi LL, Nasuda S, Zhang P, et al. (2000). Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 101: 51-58.   Gerlach WL and Bedbrook JR (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7: 1869-1885. PMid:537913 PMCid:342353   Gerlach WL and Dyer TA (1980). Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8: 4851-4865. PMid:7443527 PMCid:324264   Gill BS and Kimber G (1974). Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. U. S. A. 71: 4086- 4090. PMid:16592188 PMCid:434333   Makkouk K, Ghulam W and Comeau A (1994). Resistance to barley yellow dwarf luteovirus in Aegilops species. Can. J. Plant Sci. 74: 631-634.   McIntyre CL, Pereira S, Moran LB and Appels R (1990). New secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33: 635-640. PMid:2262137   Molnár I, Gáspár L, Sárvári É, Dulai S, et al. (2004). Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 31: 1149-1159.   Mukai Y, Nakahara Y and Yamamoto M (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489-494. PMid:18470003   Nagy ED, Molnar-Lang M, Linc G and Lang L (2002). Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45: 1238- 1247. PMid:12502270   Rayburn AL and Gill BS (1986). Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4: 102-109.   Resta P, Zhang HB, Dubcovsky J and Dvorak J (1996). The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am. J. Bot. 83: 1556-1565.   Riley R, Chapman V and Johnson R (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383-384.   Schneider A, Linc G, Molnar I and Molnar-Lang M (2005). Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat - Aegilops biuncialis disomic addition lines. Genome 48: 1070- 1082. PMid:16391676   van Slageren MWSJ (1994). Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae): A Revision of All Taxa Closely Related to Wheat, Excluding Wild Triticum Species, with Notes on Other Genera in the Tribe Triticcae, Especially Triticum: Wageningen Agricultural University, Wageningen.   Wang ZG, An TG, Li JM, Marta ML, et al. (2004). Fluorescent in situ hybridization analysis of rye chromatin in the background of "Xiaoyan No. 6". Acta Bot. Sin. 46: 436-442.
J. J. Wang, Kuang, Y., Zhang, L. L., Shen, C. L., Wang, L., Lu, S. Y., Lu, X. B., Fei, J., Gu, M. M., and Wang, Z. G., Phenotypic correction and stable expression of factor VIII in hemophilia A mice by embryonic stem cell therapy, vol. 12, pp. 1511-1521, 2013.
R. L. Sun, Wang, H. Y., Yang, X. Y., Sheng, Z. J., Li, L. M., Wang, L., Wang, Z. G., and Fei, J., Resistance to lipopolysaccharide-induced endotoxic shock in heterozygous Zfp191 gene-knockout mice, vol. 10, pp. 3712-3721, 2011.
Albanese V, Biguet NF, Kiefer H, Bayard E, et al. (2001). Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum. Mol. Genet. 10: 1785-1792. PMid:11532988   Edelstein LC and Collins T (2005). The SCAN domain family of zinc finger transcription factors. Gene 359: 1-17. PMid:16139965   Halees AS, Leyfer D and Weng Z (2003). PromoSer: A large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res. 31: 3554-3559. PMid:12824364 PMCid:168956   Han ZG, Zhang QH, Ye M, Kan LX, et al. (1999). Molecular cloning of six novel Kruppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. J. Biol. Chem. 274: 35741-35748. PMid:10585455   Harper J, Yan L, Loureiro RM, Wu I, et al. (2007). Repression of vascular endothelial growth factor expression by the zinc finger transcription factor ZNF24. Cancer Res. 67: 8736-8741. PMid:17875714   Khalfallah O, Faucon-Biguet N, Nardelli J, Meloni R, et al. (2008). Expression of the transcription factor Zfp191 during embryonic development in the mouse. Gene Expr. Patterns 8: 148-154. PMid:18096443   Khalfallah O, Ravassard P, Lagache CS, Fligny C, et al. (2009). Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 27: 1643-1653. PMid:19544452   Kyriakis JM and Avruch J (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81: 807-869. PMid:11274345   Lee JC, Kassis S, Kumar S, Badger A, et al. (1999). p38 mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol. Ther. 82: 389-397.   Li J, Chen X, Yang H, Wang S, et al. (2006). The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp. Cell Res. 312: 3990-3998. PMid:17064688   Li J, Chen X, Gong X, Liu Y, et al. (2009). A transcript profiling approach reveals the zinc finger transcription factor ZNF191 is a pleiotropic factor. BMC Genomics 10: 241. PMid:19463170 PMCid:2694838   Lu D, Searles MA and Klug A (2003). Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426: 96-100. PMid:14603324   Mannel DN (2007). Advances in sepsis research derived from animal models. Int. J. Med. Microbiol. 297: 393-400. PMid:17452126   Manthey CL, Wang SW, Kinney SD and Yao Z (1998). SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J. Leukoc. Biol. 64: 409-417. PMid:9738669   Moriyama M, Matsukawa A, Kudoh S, Takahashi T, et al. (2006). The neuropeptide neuromedin U promotes IL-6 production from macrophages and endotoxin shock. Biochem. Biophys. Res. Commun. 341: 1149-1154. PMid:16466693   Noll L, Peterson FC, Hayes PL, Volkman BF, et al. (2008). Heterodimer formation of the myeloid zinc finger 1 SCAN domain and association with promyelocytic leukemia nuclear bodies. Leuk. Res. 32: 1582-1592. PMid:18472161   Prost JF, Negre D, Cornet-Javaux F, Cortay JC, et al. (1999). Isolation, cloning, and expression of a new murine zinc finger encoding gene. Biochim. Biophys. Acta 1447: 278-283.   Remick DG and Ward PA (2005). Evaluation of endotoxin models for the study of sepsis. Shock 24 (Suppl 1): 7-11. PMid:16374366   Roth K, Chen WM and Lin TJ (2008). Positive and negative regulatory mechanisms in high-affinity IgE receptor-mediated mast cell activation. Arch. Immunol. Ther. Exp. 56: 385-399. PMid:19082920   Silvestri C, Narimatsu M, von B, I, Liu Y, et al. (2008). Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell 14: 411-423. PMid:18331719   Sriskandan S and Altmann DM (2008). The immunology of sepsis. J. Pathol. 214: 211-223. PMid:18161754   Tarca AL, Draghici S, Khatri P, Hassan SS, et al. (2009). A novel signaling pathway impact analysis. Bioinformatics 25: 75-82. PMid:18990722 PMCid:2732297   van der Poll T and van Deventer SJ (1999). Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North Am. 13: 413-26, ix.   Wang H, Sun R, Liu G, Yao M, et al. (2008). Characterization of the target DNA sequence for the DNA-binding domain of zinc finger protein 191. Acta Biochim. Biophys. Sin. 40: 704-710.   Watanabe E, Hirasawa H, Oda S, Matsuda K, et al. (2005). Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit. Care Med. 33: 89-97. PMid:15644653