Publications
Found 9 results
Filters: Author is Y.X. Liu [Clear All Filters]
“Karyotype studies on Lycoris radiata populations from China”, vol. 15, p. -, 2016.
, “Karyotype studies on Lycoris radiata populations from China”, vol. 15, p. -, 2016.
, “Effect of wilfortrine on human hepatic cancer HepG2 cell proliferation potential in vitro”, vol. 14, pp. 15349-15355, 2015.
, “Prediction of core cancer genes using a hybrid of feature selection and machine learning methods”, vol. 14, pp. 8871-8882, 2015.
, “Characteristics of growth traits and their effects on body weight of G1 individuals in the mud crab (Scylla paramamosain)”, vol. 13, pp. 6050-6059, 2014.
, “Polymorphisms of KAP6, KAP7, and KAP8 genes in four Chinese sheep breeds”, vol. 13, pp. 3438-3445, 2014.
, “Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle”, vol. 11, pp. 651-660, 2012.
, Auldist MJ and Hubble IB (1998). Effects of mastitis on raw milk and dairy products. Aust. J. Dairy Technol. 53: 28-36.
Auldist MJ, Coats S, Rogers GL and McDowell GH (1995). Changes in the composition of milk from healthy and mastitic dairy cows during the lactation cycle. Aust. J. Exp. Agr. 35: 427-436.
http://dx.doi.org/10.1071/EA9950427
Banos G and Shook GE (1990). Genotype by environment interaction and genetic correlations among parities for somatic cell count and milk yield. J. Dairy Sci. 73: 2563-2573.
http://dx.doi.org/10.3168/jds.S0022-0302(90)78942-4
Barkema HW, Van der Ploeg JD, Schukken YH, Lam TJ, et al. (1999). Management style and its association with bulk milk somatic cell count and incidence rate of clinical mastitis. J. Dairy Sci. 82: 1655-1663.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75394-4
Blanco G and Mercer RW (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physil. Renal. 275: F633-F650.
Carlén E, Strandberg E and Roth A (2004). Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish holstein cows. J. Dairy Sci. 87: 3062-3070.
http://dx.doi.org/10.3168/jds.S0022-0302(04)73439-6
Coffey EM, Vinson WE and Pearson RE (1986). Somatic cell counts and infection rates for cows of varying somatic cell count in initial test of first lactation. J. Dairy Sci. 69: 552-555.
http://dx.doi.org/10.3168/jds.S0022-0302(86)80437-4
Duangjinda M, Buayai D, Pattarajinda V, Phasuk Y, et al. (2008). Detection of bovine leukocyte antigen DRB3 alleles as candidate markers for clinical mastitis resistance in Holstein x Zebu. J. Anim. Sci. 87: 469-476.
http://dx.doi.org/10.2527/jas.2007-0789
PMid:18820165
Geering K (1997). Na, K-ATPase. Curr. Opin Nephrol. Hypertens. 6: 434-439.
http://dx.doi.org/10.1097/00041552-199709000-00005
PMid:9327201
Gloor SM (1997). Relevance of Na,K-ATPase to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Lett. 412: 1-4.
http://dx.doi.org/10.1016/S0014-5793(97)00774-6
Glorioso N, Herrera VL, Bagamasbad P, Filigheddu F, et al. (2007). Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: sex-specific and haplotype-specific effects. Circ. Res. 100: 1522-1529.
http://dx.doi.org/10.1161/01.RES.0000267716.96196.60
PMid:17446437
Heringstad B, Klemetsdal G and Ruane J (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest Prod. Sci. 64: 95-106.
http://dx.doi.org/10.1016/S0301-6226(99)00128-1
Heyen DW, Weller JI, Ron M, Band M, et al. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics 1: 165-175.
PMid:11015574
Hinrichs D, Stamer E, Junge W and Kalm E (2005). Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. J. Dairy Sci. 88: 2260-2268.
http://dx.doi.org/10.3168/jds.S0022-0302(05)72902-7
Hoeben D, Burvenich C, Eppard PJ and Hard DL (1999). Effect of recombinant bovine somatotropin on milk production and composition of cows with Streptococcus uberis mastitis. J. Dairy Sci. 82: 1671-1683.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75396-8
Hollenberg NK and Graves SW (1996). Endogenous sodium pump inhibition: current status and therapeutic opportunities. Prog. Drug Res. 46: 9-42.
PMid:8754202
Jannot MF, Raccah D, De La Tour DD, Coste T, et al. (2002). Genetic and environmental regulation of Na/K adenosine triphosphatase activity in diabetic patients. Metabolism 51: 284-291.
http://dx.doi.org/10.1053/meta.2002.29009
PMid:11887161
Klungland H, Sabry A, Heringstad B, Olsen HG, et al. (2001). Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle. Mamm. Genome 12: 837-842.
http://dx.doi.org/10.1007/s00335001-2081-3
PMid:11845286
Linzell JL and Peaker M (1971). Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism. J. Physiol. 216: 683-700.
PMid:5105748 PMCid:1331929
Longeri M, Polli M, Strillacci MG, Samore AB, et al. (2006). Short communication: quantitative trait loci affecting the somatic cell score on chromosomes 4 and 26 in Italian Holstein cattle. J. Dairy Sci. 89: 3175-3177.
http://dx.doi.org/10.3168/jds.S0022-0302(06)72591-7
Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
PMid:14907713
Lund MS, Sorensen P, Guldbrandtsen B and Sorensen DA (2003). Multitrait fine mapping of quantitative trait loci using combined linkage disequilibria and linkage analysis. Genetics 163: 405-410.
PMid:12586725 PMCid:1462397
Pavlov KV and Sokolov VS (2000). Electrogenic ion transport by Na+,K+-ATPase. Membr. Cell Biol. 13: 745-788.
PMid:10963433
Philipsson J (1995). Somatic cell count as a selection criterion for mastitis resistance in dairy cattle. Livest. Prod. Sci. 41: 195-200.
http://dx.doi.org/10.1016/0301-6226(94)00067-H
Poso J and Mantysaari EA (1996). Relationships between clinical mastitis, somatic cell score, and production for the first three lactations of Finnish Ayrshire. J. Dairy Sci. 79: 1284-1291.
http://dx.doi.org/10.3168/jds.S0022-0302(96)76483-4
Prochazka M, Walder K and Xia J (2001). AFLP fingerprinting of the human genome. Hum. Genet. 108: 59-65.
http://dx.doi.org/10.1007/s004390000438
PMid:11214909
Pyörälä S (2003). Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 34: 565-578.
http://dx.doi.org/10.1051/vetres:2003026
PMid:14556695
Rakowski RF, Gadsby DC and De Weer P (1989). Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. J. Gen. Physiol. 93: 903-941.
http://dx.doi.org/10.1085/jgp.93.5.903
PMid:2544655
Rogers GW (1993). Index selection using milk yield, somatic cell score, udder depth, teat placement, and foot angle. J. Dairy Sci. 76: 664-670.
http://dx.doi.org/10.3168/jds.S0022-0302(93)77389-0
Rupp R and Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. 34: 671-688.
http://dx.doi.org/10.1051/vetres:2003020
PMid:14556700
Schulman NF, Viitala SM, de Koning DJ, Virta J, et al. (2004). Quantitative trait loci for health traits in Finnish Ayrshire cattle. J. Dairy Sci. 87: 443-449.
http://dx.doi.org/10.3168/jds.S0022-0302(04)73183-5
Schutz MM (1994). Genetic evaluation of somatic cell scores for United States dairy cattle. J. Dairy Sci. 77: 2113-2129.
http://dx.doi.org/10.3168/jds.S0022-0302(94)77154-X
Shook GE and Schutz MM (1994). Selection on somatic cell score to improve resistance to mastitis in the United States. J. Dairy Sci. 77: 648-658.
http://dx.doi.org/10.3168/jds.S0022-0302(94)76995-2
Strandberg E and Shook GE (1989). Genetic and economic responses to breeding programs that consider mastitis. J. Dairy Sci. 72: 2136-2142.
http://dx.doi.org/10.3168/jds.S0022-0302(89)79338-3
Sugimoto M, Fujikawa A, Womack JE and Sugimoto Y (2006). Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance. Proc. Natl. Acad. Sci. U. S. A. 103: 6454-6459.
http://dx.doi.org/10.1073/pnas.0601015103
PMid:16611727 PMCid:1458905
Therien AG and Blostein R (2000). Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279: C541-C566.
PMid:10942705
Vandeputte-Van MG, Burvenich C, Roets E, Massart-Leen AM, et al. (1993). Classification of newly calved cows into moderate and severe responders to experimentally induced Escherichia coli mastitis. J. Dairy Res. 60: 19-29.
http://dx.doi.org/10.1017/S002202990002731X
Wang X, Xu S, Gao X, Ren H, et al. (2007). Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle. J. Genet. Genomics 34: 406-412.
http://dx.doi.org/10.1016/S1673-8527(07)60044-7
Wiggans GR and Shook GE (1987). A lactation measure of somatic cell count. J. Dairy Sci. 70: 2666-2672.
http://dx.doi.org/10.3168/jds.S0022-0302(87)80337-5
Yang W, Molenaar A, Kurts-Ebert B and Seyfert HM (2006). NF-kappaB factors are essential, but not the switch, for pathogen-related induction of the bovine beta-defensin 5-encoding gene in mammary epithelial cells. Mol. Immunol. 43: 210-225.
http://dx.doi.org/10.1016/j.molimm.2005.02.003
PMid:16199258
Youngerman SM, Saxton AM, Oliver SP and Pighetti GM (2004). Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J. Dairy Sci. 87: 2442-2448.
http://dx.doi.org/10.3168/jds.S0022-0302(04)73367-6
Yu SP (2003). Na+, K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem. Pharmacol. 66: 1601-1609.
http://dx.doi.org/10.1016/S0006-2952(03)00531-8
Zhou L, Yuan-Yuan Y, Zhong-Hao L, Li Juan K, et al. (2006). Detection and characterization of PCR-SSCP markers of the bovine lactoferrin gene for clinical mastitis. Asian Aust. J. Anim. 19: 1399-1403.
“Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes”, vol. 10, pp. 3771-3782, 2011.
,
An C (2008). SNP Characterization and Genetic and Molecular Analysis of Mutants Affecting Fiber Development in Cotton. PhD thesis, Mississippi State University, Starkville. Available at [http://sun.library.msstate.edu/ETD-db/theses/available/etd-03302008-191842]. Accessed....
Barrachina C and Lorences EP (1998). Xyloglucan endotransglycosylase activity in pine hypocotyls. Intracellular localization and relationship with endogenous growth. Physiol. Plant. 102: 55-60.
Basra AS and Malik CP (1984). Development of the cotton fiber. Int. Rev. Cytol. 89: 65-113.
http://dx.doi.org/10.1016/S0074-7696(08)61300-5
Cosgrove DJ (1997). Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol. 13: 171-201.
http://dx.doi.org/10.1146/annurev.cellbio.13.1.171
PMid:9442872
Cosgrove DJ (2001). Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125: 131-134.
http://dx.doi.org/10.1104/pp.125.1.131
PMid:11154315 PMCid:1539344
Cosgrove DJ (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6: 850-861.
http://dx.doi.org/10.1038/nrm1746
PMid:16261190
Edwards M, Dea ICM, Bulpin PV and Reid JSG (1985). Xyloglucan (amyloid) mobilization in the cotyledons of Tropaeolum majus L. seeds following fermination. Planta 163: 133-140.
http://dx.doi.org/10.1007/BF00395907
Fry SC, Smith RC, Renwick KF, Martin DJ, et al. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282: 821-828.
PMid:1554366 PMCid:1130861
Hasegawa O, Aotsuka S, Takokoro F, Takenishi S, et al (1994). Random Sequencing of a cDNA Library Obtained from Cotton Fiber Cells. In: Kyoto Conference on Cellulose (Shiraishi N, ed.). The Cellulose Society of Japan, Kyoto, 87.
PMid:8003639
Henriksson H, Denman SE, Campuzano ID, Ademark P, et al. (2003). N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A. Biochem. J. 375: 61-73.
http://dx.doi.org/10.1042/BJ20030485
PMid:12826015 PMCid:1223658
Kim HJ and Triplett BA (2001). Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127: 1361-1366.
http://dx.doi.org/10.1104/pp.010724
PMid:11743074 PMCid:1540163
Kohel RJ, Stelly DM and Yu J (2002). Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids. J. Hered. 93: 130-132.
http://dx.doi.org/10.1093/jhered/93.2.130
PMid:12140273
Lee J, Burns TH, Light G, Sun Y, et al. (2010). Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232: 1191-1205.
http://dx.doi.org/10.1007/s00425-010-1246-2
PMid:20711605
Maris A, Suslov D, Fry SC, Verbelen JP, et al. (2009). Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J. Exp. Bot. 60: 3959-3972.
http://dx.doi.org/10.1093/jxb/erp229
Michailidis G, Argiriou A, Darzentas N and Tsaftaris A (2009). Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J. Plant Physiol. 166: 403-416.
http://dx.doi.org/10.1016/j.jplph.2008.06.013
PMid:18789555
Narbuth EV and Kohel RJ (1990). Inheritance and linkage analysis of a new fiber mutant in cotton. J. Hered. 81: 131-133.
Nishitani K and Vissenberg K (2007). Roles of the XTH Family in the Expanding Cell. Springer, Berlin.
Pauly M, Albersheim P, Darvill A and York WS (1999). Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20: 629-639.
http://dx.doi.org/10.1046/j.1365-313X.1999.00630.x
PMid:10652135
Potter I and Fry SC (1994). Changes in xyloglucan endotransglycosylase (XET) activity during hormone-induced growth in lettuce and cucumber hypocotyls and spinach cell suspension cultures. J. Exp. Bot. 45: 1703-1710.
Pritchard J, Hetherington PR, Fry SC and Tomos AD (1993). Xyloglucan endotransglycosylase activity, microfibril orientation and the profiles of cell wall properties along growing regions of maize roots. J. Exp. Bot. 44: 1281-1289.
http://dx.doi.org/10.1093/jxb/44.8.1281
Romo S, Jimenez T, Labrador E and Dopico B (2005). The gene for a xyloglucan endotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiol. Biochem. 43: 169-176.
http://dx.doi.org/10.1016/j.plaphy.2005.01.014
PMid:15820665
Ruan YL and Chourey PS (1998). An altered mode of spatial and temporal expression of sucrose synthase in a fiberless seed mutant of cotton. Plant Physiol. 118: 399-406.
http://dx.doi.org/10.1104/pp.118.2.399
PMid:9765525 PMCid:34815
Ruan YL, Llewellyn DJ and Furbank RT (2000). Pathway and control of sucrose import into initiating cotton fibers. Aust. J. Plant Physiol. 27: 795-800.
Ruan YL, Llewellyn DJ and Furbank RT (2001). The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13: 47-60.
PMid:11158528 PMCid:102212
Ryser U (1999). Cotton Fiber Initiation and Histo Differentiation. In: Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing (Basra AS, ed.). Food Products Press, New York, 1-45.
PMid:10467026
Schubert AM, Benedict CR, Berlin JD and Kohel RJ (1973). Cotton fiber development-kinetics of cell elongation and secondary wall thicking. Crop Sci. 13: 704-709.
http://dx.doi.org/10.2135/cropsci1973.0011183X001300060035x
Schümann PHD, Smith RC, Lang V, Matthews PR, et al. (1997). Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant Cell Environ. 20: 1439-1450.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-49.x
Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, et al. (1997). Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol. 38: 375-378.
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029178
PMid:9150611
Silva JD, Arrowsmith DA, Hellyer S, Whiteman S, et al. (1994). Xyloglucan endotransglycosylase and plant growth. J. Exp. Bot. 45: 1693-1701.
Smart LB, Vojdani F, Maeshima M and Wilkins TA (1998). Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol. 116: 1539-1549.
http://dx.doi.org/10.1104/pp.116.4.1539
PMid:9536073 PMCid:35063
Sulová Z, Lednicka M and Farkas V (1995). A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Anal. Biochem. 229: 80-85.
http://dx.doi.org/10.1006/abio.1995.1381
PMid:8533899
Thompson JE, Smith RC and Fry SC (1997). Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem. J. 327: 699-708.
PMid:9581545 PMCid:1218846
Thompson JE and Fry SC (2000). Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211: 275-286.
http://dx.doi.org/10.1007/s004250000287
PMid:10945222
Verbelen JP, Vissenberg K, Kerstens S and Le J (2001). Cell expansion in the epidermis: microtubules, cellulose orientation and wall loosening enzymes. J. Plant Physiol. 158: 537-543.
http://dx.doi.org/10.1078/0176-1617-00277
Vissenberg K, Martinez-Vilchez IM, Verbelen JP, Miller JG, et al. (2000). In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12: 1229-1237.
PMid:10899986 PMCid:149061
Vissenberg K, Fry SC and Verbelen JP (2001). Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol. 127: 1125-1135.
http://dx.doi.org/10.1104/pp.010295
PMid:11706192 PMCid:129281
Vissenberg K, Fry SC, Pauly M, Hofte H, et al. (2005). XTH acts at the microfibril-matrix interface during cell elongation. J. Exp. Bot. 56: 673-683.
http://dx.doi.org/10.1093/jxb/eri048
PMid:15642717
Xu Y, Xuede W, Shuli J and Chaohua C (2002). Isolation of high-quality RNA from cotton fiber cells by eliminating the interference of endogenous phenolics and secondary metabolites. Cotton Sci. 14: 143-146.
Zhao PM, Wang LL, Han LB, Wang J, et al. (2010). Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J. Proteome Res. 9: 1076-1087.
http://dx.doi.org/10.1021/pr900975t
PMid:19954254
“Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle”, vol. 9. pp. 891-896, 2010.
, Armstrong DV (1994). Heat stress interaction with shade and cooling. J. Dairy Sci. 77: 2044-2050.
http://dx.doi.org/10.3168/jds.S0022-0302(94)77149-6
Bernabucci U, Ronchi B, Lacetera N and Nardone A (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 85: 2173-2179.
http://dx.doi.org/10.3168/jds.S0022-0302(02)74296-3
Dybus A and Grzesiak (2006). GHRH/HaeIII gene polymorphism and its associations with milk production traits in Polish Black-and-White cattle. Arch. Tierz., Dummerstorf 49: 434-438.
El-Nouty FD, Elbanna IM, Davis TP and Johnson HD (1980). Aldosterone and ADH response to heat and dehydration in cattle. J. Appl. Physiol. 48: 249-255.
PMid:7364609
Glorioso N, Herrera VL, Bagamasbad P, Filigheddu F, et al. (2007). Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: sex-specific and haplotype-specific effects. Circ. Res. 100: 1522-1529.
http://dx.doi.org/10.1161/01.RES.0000267716.96196.60
PMid:17446437
Hawken RJ, Barris WC, McWilliam SM and Dalrymple BP (2004). An interactive bovine in silico SNP database (IBISS). Mamm. Genome 15: 819-827.
http://dx.doi.org/10.1007/s00335-004-2382-4
PMid:15520884
Herrera VL, Emanuel JR, Ruiz-Opazo N, Levenson R, et al. (1987). Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications. J. Cell Biol. 105: 1855-1865.
http://dx.doi.org/10.1083/jcb.105.4.1855
PMid:2822726
Jannot MF, Raccah D, De La Tour DD, Coste T, et al. (2002). Genetic and environmental regulation of Na/K adenosine triphosphatase activity in diabetic patients. Metabolism 51: 284-291.
http://dx.doi.org/10.1053/meta.2002.29009
PMid:11887161
Maruya E, Saji H and Yokoyama S (1996). PCR-LIS-SSCP (Low ionic strength single-stranded conformation polymorphism) - a simple method for high-resolution allele typing of HLA-DRB1, -DQB1, and -DPB1. Genome Res. 6: 51-57.
http://dx.doi.org/10.1101/gr.6.1.51
PMid:8681139
Morel P, Tallineau C, Pontcharraud R, Piriou A, et al. (1998). Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem. Int. 33: 531-540.
http://dx.doi.org/10.1016/S0197-0186(98)00062-X
Rhoad AO (1944). The Iberia heat tolerance test for cattle. Trop. Agricult. 21: 162-164.
Smith TR, Chapa A, Willard S, Herndon C Jr, et al. (2006). Evaporative tunnel cooling of dairy cows in the southeast. II: impact on lactation performance. J. Dairy Sci. 89: 3915-3923.
http://dx.doi.org/10.3168/jds.S0022-0302(06)72434-1
Srikandakumar A and Johnson EH (2004). Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows. Trop. Anim. Health Prod. 36: 685-692.
http://dx.doi.org/10.1023/B:TROP.0000042868.76914.a9
PMid:15563029
Sweadner KJ, Wetzel RK and Arystarkhova E (2000). Genomic organization of the human FXYD2 gene encoding the gamma subunit of the Na,K-ATPase. Biochem. Biophys. Res. Commun. 279: 196-201.
http://dx.doi.org/10.1006/bbrc.2000.3907
PMid:11112438
Valtorta SE and Gallardo MR (2004). Evaporative cooling for Holstein dairy cows under grazing conditions. Int. J. Biometeorol. 48: 213-217.
http://dx.doi.org/10.1007/s00484-003-0196-9
PMid:14639473
Yeh F, Yang R and Boyle T (1999). POPGENE version 1.31. Microsoft Windows-based freeware for population genetic analysis. University of Alberta and Centre for Internacional Forestry Research, Canada. Available at [http://www. ualberta.ca/~fyeh/fyeh].