Publications
Found 6 results
Filters: Author is Y.L. Hu [Clear All Filters]
, ,
“Relationship between RUNX3 methylation and hepatocellular carcinoma in Asian populations: a systematic review”, vol. 13, pp. 5182-5189, 2014.
, “Development and characterization of microsatellite loci in a threatened marine fish, Cheilinus undulatus (humphead wrasse)”, vol. 12, pp. 2633-2636, 2013.
, “HNF1b is involved in prostate cancer risk via modulating androgenic hormone effects and coordination with other genes”, vol. 12, pp. 1327-1335, 2013.
, Cappello F, Rappa F, David S, Anzalone R, et al. (2003). Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res. 23: 1325-1331.
PMid:12820390
Castilla C, Congregado B, Conde JM, Medina R, et al. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 76: 1017.e1-6.
Chan J, Song CS, Matusik RJ, Chatterjee B, et al. (1998). Inhibition of androgen action by dehydroepiandrosterone sulfotransferase transfected in PC3 prostate cancer cells. Chem. Biol. Interact. 109: 267-278.
http://dx.doi.org/10.1016/S0009-2797(97)00138-5
Chang C, Saltzman A, Lee HJ, Uemura H, et al. (1993). Genomic structure, chromosomal localization and expression of an androgen inducible TR3 orphan receptor: a member of the steroid receptor superfamily. Endocrine J. 1: 541-549.
Chen YZ, Gao Q, Zhao XZ, Chen YZ, et al. (2010). Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin. Med. J. 123: 3326-3333.
Cornford PA, Dodson AR, Parsons KF, Desmond AD, et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 60: 7099-7105.
PMid:11156417
Das K, Lorena PD, Ng LK, Lim D, et al. (2010). Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer. Endocr. Relat. Cancer 17: 757-770.
http://dx.doi.org/10.1677/ERC-10-0022
PMid:20519274
Denmeade SR and Isaacs JT (2004). Development of prostate cancer treatment: the good news. Prostate 58: 211-224.
http://dx.doi.org/10.1002/pros.10360
PMid:14743459
Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, et al. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40: 316-321.
http://dx.doi.org/10.1038/ng.90
PMid:18264097
Ghosh JC, Dohi T, Kang BH and Altieri DC (2008). Hsp60 regulation of tumor cell apoptosis. J. Biol. Chem. 283: 5188- 5194.
http://dx.doi.org/10.1074/jbc.M705904200
PMid:18086682
Ghosh JC, Siegelin MD, Dohi T and Altieri DC (2010). Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70: 8988-8993.
http://dx.doi.org/10.1158/0008-5472.CAN-10-2225
PMid:20978188 PMCid:2982903
Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, et al. (2007). Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39: 977-983.
http://dx.doi.org/10.1038/ng2062
PMid:17603485
Hamid T, Malik MT, Millar RP and Kakar SS (2008). Protein kinase A serves as a primary pathway in activation of Nur77 expression by gonadotropin-releasing hormone in the LbetaT2 mouse pituitary gonadotroph tumor cell line. Int. J. Oncol. 33: 1055-1064.
PMid:18949369
Harries LW, Perry JR, McCullagh P and Crundwell M (2010). Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 10: 315.
http://dx.doi.org/10.1186/1471-2407-10-315
PMid:20569440 PMCid:2908099
Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.
PMid:19131956
Johnson GL and Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912.
http://dx.doi.org/10.1126/science.1072682
PMid:12471242
Kato N and Motoyama T (2009). Hepatocyte nuclear factor-1beta(HNF-1beta) in human urogenital organs: its expression and role in embryogenesis and tumorigenesis. Histol. Histopathol. 24: 1479-1486.
PMid:19760597
Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, et al. (2011). Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol. Cancer 10: 35.
http://dx.doi.org/10.1186/1476-4598-10-35
PMid:21470426 PMCid:3083377
Liu F, Hsing AW, Wang X, Shao Q, et al. (2011). Systematic confirmation study of reported prostate cancer risk-associated single nucleotide polymorphisms in Chinese men. Cancer Sci. 102: 1916-1920.
http://dx.doi.org/10.1111/j.1349-7006.2011.02036.x
PMid:21756274 PMCid:3581323
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
http://dx.doi.org/10.1006/meth.2001.1262
PMid:11846609
Manolio TA, Brooks LD and Collins FS (2008). A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118: 1590-1605.
http://dx.doi.org/10.1172/JCI34772
PMid:18451988 PMCid:2336881
Maqungo M, Kaur M, Kwofie SK, Radovanovic A, et al. (2011). DDPC: Dragon Database of Genes associated with Prostate Cancer. Nucleic Acids Res. 39: D980-D985.
http://dx.doi.org/10.1093/nar/gkq849
PMid:20880996 PMCid:3013759
Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, et al. (2012). Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet. 8: e1002505.
http://dx.doi.org/10.1371/journal.pgen.1002505
PMid:22383892 PMCid:3285582
Ning QY, Wu JZ, Zang N, Liang J, et al. (2011). Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis. Genet. Mol. Res. 10: 3856-3887.
http://dx.doi.org/10.4238/2011.December.14.10
PMid:22194210
Pierce BL and Ahsan H (2010). Genetic susceptibility to type 2 diabetes is associated with reduced prostate cancer risk. Hum. Hered. 69: 193-201.
http://dx.doi.org/10.1159/000289594
PMid:20203524 PMCid:2866577
Setiawan VW, Haessler J, Schumacher F, Cote ML, et al. (2012). HNF1B and endometrial cancer risk: results from the PAGE study. PLoS One 7: e30390.
http://dx.doi.org/10.1371/journal.pone.0030390
PMid:22299039 PMCid:3267708
Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, et al. (2011). Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome. Res. 10: 259-268.
http://dx.doi.org/10.1021/pr100921j
PMid:20977276
Song CS, Jung MH, Kim SC, Hassan T, et al. (1998). Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J. Biol. Chem. 273: 21856-21866.
http://dx.doi.org/10.1074/jbc.273.34.21856
PMid:9705324
Szponar A, Yusenko MV, Kuiper R, van Kessel AG, et al. (2011). Genomic profiling of papillary renal cell tumours identifies small regions of DNA alterations: a possible role of HNF1B in tumour development. Histopathology 58: 934-943.
http://dx.doi.org/10.1111/j.1365-2559.2011.03795.x
PMid:21438902
Takata R, Akamatsu S, Kubo M, Takahashi A, et al. (2010). Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42: 751-754.
http://dx.doi.org/10.1038/ng.635
PMid:20676098
Terasawa K, Toyota M, Sagae S, Ogi K, et al. (2006). Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br. J. Cancer 94: 914-921.
http://dx.doi.org/10.1038/sj.bjc.6602984
PMid:16479257 PMCid:2361363
Thomas G, Jacobs KB, Yeager M, Kraft P, et al. (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40: 310-315.
http://dx.doi.org/10.1038/ng.91
PMid:18264096
Tommasi S, Karm DL, Wu X, Yen Y, et al. (2009). Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 11: R14.
http://dx.doi.org/10.1186/bcr2233
PMid:19250546 PMCid:2687719
Tronche F and Yaniv M (1992). HNF1, a homeoprotein member of the hepatic transcription regulatory network. Bioessays 14: 579-587.
http://dx.doi.org/10.1002/bies.950140902
PMid:1365913
Uemura H and Chang C (1998). Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 139: 2329-2334.
http://dx.doi.org/10.1210/en.139.5.2329
PMid:9564841
Wilhite SE and Barrett T (2012). Strategies to explore functional genomics data sets in NCBI's GEO database. Methods Mol. Biol. 802: 41-53.
http://dx.doi.org/10.1007/978-1-61779-400-1_3
PMid:22130872 PMCid:3341798
Wixon J and Kell D (2000). The Kyoto Encyclopedia of Genes and Genomes - KEGG. Yeast 17: 48-55.
PMid:10928937
“Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis”, vol. 10, pp. 3856-3887, 2011.
,
Aalinkeel R, Hu Z, Nair BB, Sykes DE, et al. (2010). Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-"Ashwagandha" in Prostate Cancer Cells. Evid. Based Complement. Alternat. Med. 7: 177-187.
http://dx.doi.org/10.1093/ecam/nem184
PMid:18955307 PMCid:2862933
Balda MS and Matter K (2003). Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol. 13: 310-318.
http://dx.doi.org/10.1016/S0962-8924(03)00105-3
Brown BM (1975). A Method for combining non-independent, one-sided tests of significance. Biometrics 31: 987-992.
http://dx.doi.org/10.2307/2529826
Chandran UR, Ma C, Dhir R, Bisceglia M, et al. (2007). Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64.
http://dx.doi.org/10.1186/1471-2407-7-64
PMid:17430594 PMCid:1865555
Endo T, Uzawa K, Suzuki H, Tanzawa H, et al. (2009). Characteristic gene expression profiles of benign prostatic hypertrophy and prostate cancer. Int. J. Oncol. 35: 499-509.
PMid:19639170
Franzen CA, Amargo E, Todorovic V, Desai BV, et al. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev. Res. 2: 830-841.
http://dx.doi.org/10.1158/1940-6207.CAPR-09-0066
PMid:19737984
Huang D, Casale GP, Tian J, Lele SM, et al. (2010). Udp-glucose dehydrogenase as a novel field-specific candidate biomarker of prostate cancer. Int. J. Cancer 126: 315-327.
http://dx.doi.org/10.1002/ijc.24820
PMid:19676054 PMCid:2794918
Iwata T, Schultz D, Hicks J, Hubbard GK, et al. (2010). MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5: e9427.
http://dx.doi.org/10.1371/journal.pone.0009427
PMid:20195545 PMCid:2828486
Kaper F, Dornhoefer N and Giaccia AJ (2006). Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res. 66: 1561-1569.
http://dx.doi.org/10.1158/0008-5472.CAN-05-3375
PMid:16452213
Lee EK, Cho H and Kim CW (2011). Proteomic analysis of cancer stem cells in human prostate cancer cells. Biochem. Biophys. Res. Commun. 412: 279-285.
http://dx.doi.org/10.1016/j.bbrc.2011.07.083
PMid:21820414
Liang CH, Liu Q, Zhou FJ, Gao X, et al. (2007). Etiologic correlations of prostate cancer in Guangdong, China to family history of cancers, and sexual and marital factors-a case-control study. Ai Zheng 26: 484-488.
PMid:17672937
Migita T, Ruiz S, Fornari A, Fiorentino M, et al. (2009). Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst. 101: 519-532.
http://dx.doi.org/10.1093/jnci/djp030
PMid:19318631 PMCid:2664091
Mitra S, Annamalai L, Chakraborty S, Johnson K, et al. (2006). Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. Mol. Biol. Cell 17: 5400-5416.
http://dx.doi.org/10.1091/mbc.E06-04-0280
PMid:17050739 PMCid:1679700
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34: 267-273.
http://dx.doi.org/10.1038/ng1180
PMid:12808457
Nadiminty N, Chun JY, Lou W, Lin X, et al. (2008). NF-kappaB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68: 1725-1733.
http://dx.doi.org/10.1002/pros.20839
PMid:18781579
Nadiminty N, Dutt S, Tepper C and Gao AC (2010). Microarray analysis reveals potential target genes of NF-kappaB2/ p52 in LNCaP prostate cancer cells. Prostate 70: 276-287.
PMid:19827050
Nanni S, Priolo C, Grasselli A, D'Eletto M, et al. (2006). Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol. Cancer Res. 4: 79-92.
http://dx.doi.org/10.1158/1541-7786.MCR-05-0098
PMid:16513839
Ouyang DY, Ji YH, Saltis M, Xu LH, et al. (2011). Valproic acid synergistically enhances the cytotoxicity of gossypol in DU145 prostate cancer cells: an iTRTAQ-based quantitative proteomic analysis. J. Proteomics 74: 2180-2193.
http://dx.doi.org/10.1016/j.jprot.2011.06.016
PMid:21726675
Pettazzoni P, Ciamporcero E, Medana C, Pizzimenti S, et al. (2011). Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells. Free Radic. Biol. Med. 51: 1610-1618.
http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.009
PMid:21816220
Rebbeck TR, Rennert H, Walker AH, Panossian S, et al. (2008). Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int. J. Cancer 123: 1385-1389.
http://dx.doi.org/10.1002/ijc.23687
PMid:18566991 PMCid:2700293
Revenu C, Athman R, Robine S and Louvard D (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5: 635-646.
http://dx.doi.org/10.1038/nrm1437
PMid:15366707
Romanuik TL, Ueda T, Le N, Haile S, et al. (2009). Novel biomarkers for prostate cancer including noncoding transcripts. Am. J. Pathol. 175: 2264-2276.
http://dx.doi.org/10.2353/ajpath.2009.080868
PMid:19893039 PMCid:2789638
Shah GV, Thomas S, Muralidharan A, Liu Y, et al. (2008). Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways. Endocr. Relat. Cancer 15: 953-964.
http://dx.doi.org/10.1677/ERC-08-0136
PMid:18784182
Singh D, Febbo PG, Ross K, Jackson DG, et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203-209.
http://dx.doi.org/10.1016/S1535-6108(02)00030-2
Skvortsova I, Skvortsov S, Stasyk T, Raju U, et al. (2008). Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8: 4521-4533.
http://dx.doi.org/10.1002/pmic.200800113
PMid:18821526
Song K, Wang H, Krebs TL, Wang B, et al. (2010). DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol. Endocrinol. 24: 2019-2029.
http://dx.doi.org/10.1210/me.2010-0165
PMid:20739403 PMCid:2954637
Suarez-Farinas M, Lowes MA, Zaba LC and Krueger JG (2010). Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One 5: e10247.
http://dx.doi.org/10.1371/journal.pone.0010247
PMid:20422035 PMCid:2857878
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102: 15545-15550.
http://dx.doi.org/10.1073/pnas.0506580102
PMid:16199517 PMCid:1239896
Takeda K and Ichijo H (2002). Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7: 1099-1111.
http://dx.doi.org/10.1046/j.1365-2443.2002.00591.x
PMid:12390245
Tate AW, Lung T, Radhakrishnan A, Lim SD, et al. (2006). Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66: 19-31.
http://dx.doi.org/10.1002/pros.20317
PMid:16114058
Veeramani S, Igawa T, Yuan TC, Lin FF, et al. (2005). Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene 24: 7203-7212.
http://dx.doi.org/10.1038/sj.onc.1208852
PMid:16170380
Vellaichamy A, Sreekumar A, Strahler JR, Rajendiran T, et al. (2009). Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One 4: e7075.
http://dx.doi.org/10.1371/journal.pone.0007075
PMid:19763266 PMCid:2740864
Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, et al. (2010). Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 70: 443-455.
PMid:19902470 PMCid:2935631
Wallace TA, Prueitt RL, Yi M, Howe TM, et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68: 927-936.
http://dx.doi.org/10.1158/0008-5472.CAN-07-2608
PMid:18245496
Wu T, Giovannucci E, Welge J, Mallick P, et al. (2011). Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br. J. Cancer 105: 65-73.
http://dx.doi.org/10.1038/bjc.2011.143
PMid:21654682 PMCid:3137397
Yang J, Wahdan-Alaswad R and Danielpour D (2009). Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Cancer Res. 69: 2185-2190.
http://dx.doi.org/10.1158/0008-5472.CAN-08-3961
PMid:19276350 PMCid:3345028
Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, et al. (2008). DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68: 8954-8967.
http://dx.doi.org/10.1158/0008-5472.CAN-07-6088
PMid:18974140 PMCid:2577392