Publications

Found 6 results
Filters: Author is J.Z. Wu  [Clear All Filters]
2013
Y. L. Hu, Zhong, D., Pang, F., Ning, Q. Y., Zhang, Y. Y., Li, G., Wu, J. Z., and Mo, Z. N., HNF1b is involved in prostate cancer risk via modulating androgenic hormone effects and coordination with other genes, vol. 12, pp. 1327-1335, 2013.
Cappello F, Rappa F, David S, Anzalone R, et al. (2003). Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res. 23: 1325-1331. PMid:12820390   Castilla C, Congregado B, Conde JM, Medina R, et al. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 76: 1017.e1-6.   Chan J, Song CS, Matusik RJ, Chatterjee B, et al. (1998). Inhibition of androgen action by dehydroepiandrosterone sulfotransferase transfected in PC3 prostate cancer cells. Chem. Biol. Interact. 109: 267-278. http://dx.doi.org/10.1016/S0009-2797(97)00138-5   Chang C, Saltzman A, Lee HJ, Uemura H, et al. (1993). Genomic structure, chromosomal localization and expression of an androgen inducible TR3 orphan receptor: a member of the steroid receptor superfamily. Endocrine J. 1: 541-549.   Chen YZ, Gao Q, Zhao XZ, Chen YZ, et al. (2010). Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin. Med. J. 123: 3326-3333.   Cornford PA, Dodson AR, Parsons KF, Desmond AD, et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 60: 7099-7105. PMid:11156417   Das K, Lorena PD, Ng LK, Lim D, et al. (2010). Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer. Endocr. Relat. Cancer 17: 757-770. http://dx.doi.org/10.1677/ERC-10-0022 PMid:20519274   Denmeade SR and Isaacs JT (2004). Development of prostate cancer treatment: the good news. Prostate 58: 211-224. http://dx.doi.org/10.1002/pros.10360 PMid:14743459   Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, et al. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40: 316-321. http://dx.doi.org/10.1038/ng.90 PMid:18264097   Ghosh JC, Dohi T, Kang BH and Altieri DC (2008). Hsp60 regulation of tumor cell apoptosis. J. Biol. Chem. 283: 5188- 5194. http://dx.doi.org/10.1074/jbc.M705904200 PMid:18086682   Ghosh JC, Siegelin MD, Dohi T and Altieri DC (2010). Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70: 8988-8993. http://dx.doi.org/10.1158/0008-5472.CAN-10-2225 PMid:20978188 PMCid:2982903   Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, et al. (2007). Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39: 977-983. http://dx.doi.org/10.1038/ng2062 PMid:17603485   Hamid T, Malik MT, Millar RP and Kakar SS (2008). Protein kinase A serves as a primary pathway in activation of Nur77 expression by gonadotropin-releasing hormone in the LbetaT2 mouse pituitary gonadotroph tumor cell line. Int. J. Oncol. 33: 1055-1064. PMid:18949369   Harries LW, Perry JR, McCullagh P and Crundwell M (2010). Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 10: 315. http://dx.doi.org/10.1186/1471-2407-10-315 PMid:20569440 PMCid:2908099   Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. PMid:19131956   Johnson GL and Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912. http://dx.doi.org/10.1126/science.1072682 PMid:12471242   Kato N and Motoyama T (2009). Hepatocyte nuclear factor-1beta(HNF-1beta) in human urogenital organs: its expression and role in embryogenesis and tumorigenesis. Histol. Histopathol. 24: 1479-1486. PMid:19760597   Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, et al. (2011). Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol. Cancer 10: 35. http://dx.doi.org/10.1186/1476-4598-10-35 PMid:21470426 PMCid:3083377   Liu F, Hsing AW, Wang X, Shao Q, et al. (2011). Systematic confirmation study of reported prostate cancer risk-associated single nucleotide polymorphisms in Chinese men. Cancer Sci. 102: 1916-1920. http://dx.doi.org/10.1111/j.1349-7006.2011.02036.x PMid:21756274 PMCid:3581323   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Manolio TA, Brooks LD and Collins FS (2008). A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118: 1590-1605. http://dx.doi.org/10.1172/JCI34772 PMid:18451988 PMCid:2336881   Maqungo M, Kaur M, Kwofie SK, Radovanovic A, et al. (2011). DDPC: Dragon Database of Genes associated with Prostate Cancer. Nucleic Acids Res. 39: D980-D985. http://dx.doi.org/10.1093/nar/gkq849 PMid:20880996 PMCid:3013759   Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, et al. (2012). Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet. 8: e1002505. http://dx.doi.org/10.1371/journal.pgen.1002505 PMid:22383892 PMCid:3285582   Ning QY, Wu JZ, Zang N, Liang J, et al. (2011). Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis. Genet. Mol. Res. 10: 3856-3887. http://dx.doi.org/10.4238/2011.December.14.10 PMid:22194210   Pierce BL and Ahsan H (2010). Genetic susceptibility to type 2 diabetes is associated with reduced prostate cancer risk. Hum. Hered. 69: 193-201. http://dx.doi.org/10.1159/000289594 PMid:20203524 PMCid:2866577   Setiawan VW, Haessler J, Schumacher F, Cote ML, et al. (2012). HNF1B and endometrial cancer risk: results from the PAGE study. PLoS One 7: e30390. http://dx.doi.org/10.1371/journal.pone.0030390 PMid:22299039 PMCid:3267708   Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, et al. (2011). Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome. Res. 10: 259-268. http://dx.doi.org/10.1021/pr100921j PMid:20977276   Song CS, Jung MH, Kim SC, Hassan T, et al. (1998). Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J. Biol. Chem. 273: 21856-21866. http://dx.doi.org/10.1074/jbc.273.34.21856 PMid:9705324   Szponar A, Yusenko MV, Kuiper R, van Kessel AG, et al. (2011). Genomic profiling of papillary renal cell tumours identifies small regions of DNA alterations: a possible role of HNF1B in tumour development. Histopathology 58: 934-943. http://dx.doi.org/10.1111/j.1365-2559.2011.03795.x PMid:21438902   Takata R, Akamatsu S, Kubo M, Takahashi A, et al. (2010). Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42: 751-754. http://dx.doi.org/10.1038/ng.635 PMid:20676098   Terasawa K, Toyota M, Sagae S, Ogi K, et al. (2006). Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br. J. Cancer 94: 914-921. http://dx.doi.org/10.1038/sj.bjc.6602984 PMid:16479257 PMCid:2361363   Thomas G, Jacobs KB, Yeager M, Kraft P, et al. (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40: 310-315. http://dx.doi.org/10.1038/ng.91 PMid:18264096   Tommasi S, Karm DL, Wu X, Yen Y, et al. (2009). Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 11: R14. http://dx.doi.org/10.1186/bcr2233 PMid:19250546 PMCid:2687719   Tronche F and Yaniv M (1992). HNF1, a homeoprotein member of the hepatic transcription regulatory network. Bioessays 14: 579-587. http://dx.doi.org/10.1002/bies.950140902 PMid:1365913   Uemura H and Chang C (1998). Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 139: 2329-2334. http://dx.doi.org/10.1210/en.139.5.2329 PMid:9564841   Wilhite SE and Barrett T (2012). Strategies to explore functional genomics data sets in NCBI's GEO database. Methods Mol. Biol. 802: 41-53. http://dx.doi.org/10.1007/978-1-61779-400-1_3 PMid:22130872 PMCid:3341798   Wixon J and Kell D (2000). The Kyoto Encyclopedia of Genes and Genomes - KEGG. Yeast 17: 48-55. PMid:10928937
2011
P. Y. Zeng, Wu, J. G., Liao, L. M., Chen, T. - Q., Wu, J. Z., and Wong, K. - H., In vitro antioxidant activities of endophytic fungi isolated from the liverwort Scapania verrucosa, vol. 10, pp. 3169-3179, 2011.
Ainsworth GC, Sparrow FK and Sussman AS (1973). The Fungi, An Advanced Treatise. Vol. IV A. A Taxonomic Review With Keys: Ascomycetes and Fungi Imperfecti. Academic Press, New York. Aly AH, Edrada-Ebel R, Wray V, Muller WE, et al. (2008). Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69: 1716-1725. http://dx.doi.org/10.1016/j.phytochem.2008.02.013 PMid:18400237 Anderson D (1996). Antioxidant defences against reactive oxygen species causing genetic and other damage. Mutat. Res. 350: 103-108. http://dx.doi.org/10.1016/0027-5107(95)00096-8 Baardseth P (1989). Effect of selected antioxidants on the stability of dehydrated mashed potatoes. Food Addit. Contam. 6: 201-207. http://dx.doi.org/10.1080/02652038909373775 PMid:2924977 Barnett HL and Hunter BB (1997). Illustrated Genera of Imperfecti Fungi. 3rd edn. China Scientific Press, Beijing. Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, et al. (2003). Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation 76: 50-54. http://dx.doi.org/10.1097/01.TP.0000069835.95442.9F PMid:12865785 Fridovich I (1978). The biology of oxygen radicals. Science 201: 875-880. http://dx.doi.org/10.1126/science.210504 PMid:210504 Gao Q and Cao T (2000). Bryophyta: Hepaticae, Anthocerotae. In: Flora Yunnanica (Wu Zhengyi, ed.). Vol. 17. Science Press, Beijing, 247. Gould GW (1995). Biodeterioration of foods and an overview of preservation in the food and dairy industries. Int. Biodeter. Biodegr. 36: 267-277. http://dx.doi.org/10.1016/0964-8305(95)00101-8 PMCid:373060 Guo LD, Hyde KD and Liew ECY (2000). Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 147: 617-630. http://dx.doi.org/10.1046/j.1469-8137.2000.00716.x Guo L, Wu JZ, Han T, Cao T, et al. (2008). Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme. Molecules 13: 2114-2125. http://dx.doi.org/10.3390/molecules13092114 PMid:18830144 Guo L, Wu JZ, Xu QZ and Han T (2009). Screening of active strains in endophytic fungi from Scapania verrucosa. Zhongcaoyao 40: 1090-1094. Harper JK, Arif AM, Ford EJ, Strobel GA, et al. (2003). Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59: 2471-2476. http://dx.doi.org/10.1016/S0040-4020(03)00255-2 Hawksworth DL, Sutton BC and Andainsworth GC (1983). Dictionary of the Fungi. 7th edn. Common Wealth Mycological Institute, Kew. Huang WY, Cai YZ, Hyde KD, Corke H, et al. (2007). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J. Microbiol. Biotechnol. 23: 1253-1263. http://dx.doi.org/10.1007/s11274-007-9357-z Jao CL and Ko WC (2002). 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish. Sci. 68: 430-435. http://dx.doi.org/10.1046/j.1444-2906.2002.00442.x Kinsella JE, Frankel E, German B and Kanner J (1993). Possible mechanism for the protective role of antioxidants in wine and plant foods. Food Technol. 47: 85-89. Lin Z, Zhu T, Fang Y, Gu Q, et al. (2008). Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69: 1273-1278. http://dx.doi.org/10.1016/j.phytochem.2007.10.030 PMid:18067932 Liu L, Tian R, Liu S, Chen X, et al. (2008). Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg. Med. Chem. 16: 6021-6026. http://dx.doi.org/10.1016/j.bmc.2008.04.052 Medved I, Brown MJ, Bjorksten AR, Murphy KT, et al. (2004). N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J. Appl. Physiol. 97: 1477-1485. http://dx.doi.org/10.1152/japplphysiol.00371.2004 PMid:15194675 Miliauskas G, Venskutonis PR and Van Beek TA (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85: 231-237. http://dx.doi.org/10.1016/j.foodchem.2003.05.007 O’Donnell K, Cigelnik E, Weber NS and Trappe JM (1997). Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89: 48-65. http://dx.doi.org/10.2307/3761172 Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. Jap. J. Nut. 44: 307-315. http://dx.doi.org/10.5264/eiyogakuzashi.44.307 Petrini O (1991). Fungal Endophytes of Tree Leave. In: Microbial Ecology of Leaves (Andrews JA and Hirano SS, eds.). Spring-Verlag, New York, 179-197. http://dx.doi.org/10.1007/978-1-4612-3168-4_9 Phongpaichit S, Nikom J, Rungjindamai N, Sakayaroj J, et al. (2007). Biological activities of extracts from endophytic fungi isolated from garcinia plants. Fems Immunol. Med. Mic. 51: 517-525. http://dx.doi.org/10.1111/j.1574-695X.2007.00331.x Re R, Pellegrini N, Proteggente A, Pannala A, et al. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3 Reische DW, Lillard DA and Eitenmiller RR (1998). Antioxidants. In: Food Lipids: Chemistry, Nutrition, and Biotechnology (Akoh CC and Min DB, eds.). Marcel Dekker, New York, 423-448. Schulz B, Boyle C, Draeger S, Römmert AK, et al. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106: 996-1004. http://dx.doi.org/10.1017/S0953756202006342 Singh N and Rajini PS (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85: 611-616. http://dx.doi.org/10.1016/j.foodchem.2003.07.003 Smirnoff N and Cumbes QJ (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060. http://dx.doi.org/10.1016/0031-9422(89)80182-7 Souza AD, Rodrigues-Filho E, Souza AQ, Pereira JO, et al. (2008). Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii. Toxicon 51: 240-250. http://dx.doi.org/10.1016/j.toxicon.2007.09.009 PMid:17983638 Söderström L, Séneca A and Santos M (2007). Rarity patterns in members of the Lophoziaceae/Scapaniaceae complex occurring north of the tropics - implications for conservation. Biol. Conserv. 135: 352-359. http://dx.doi.org/10.1016/j.biocon.2006.10.012 Srivastava A, Harish SR and Shivanandappa T (2006). Antioxidant activity of the roots of Decalepis hamiltonii (Wight & Arn.). LWT - Food Sci. Technol. 39: 1059-1065. Stierle A, Strobel G and Stierle D (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214-216. http://dx.doi.org/10.1126/science.8097061 PMid:8097061 Strobel G, Ford E, Worapong J, Harper JK, et al. (2002). Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60: 179-183. http://dx.doi.org/10.1016/S0031-9422(02)00062-6 Tan RX and Zou WX (2001). Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. http://dx.doi.org/10.1039/b100918o PMid:11548053 Wu CR, Huang MY, Lin YT, Ju HY, et al. (2007). Antioxidant properties of cortex fraxini and its simple coumarins. Food Chem. 104: 1464-1471. http://dx.doi.org/10.1016/j.foodchem.2007.02.023 Xing R, Yu H, Liu S, Zhang W, et al. (2005). Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg. Med. Chem. 13: 1387-1392. http://dx.doi.org/10.1016/j.bmc.2004.11.002 Yu L, Haley S, Perret J, Harris M, et al. (2002). Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50: 1619-1624. http://dx.doi.org/10.1021/jf010964p PMid:11879046
Q. Y. Ning, Wu, J. Z., Zang, N., Liang, J., Hu, Y. L., and Mo, Z. N., Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis, vol. 10, pp. 3856-3887, 2011.
Aalinkeel R, Hu Z, Nair BB, Sykes DE, et al. (2010). Genomic Analysis Highlights the Role of the JAK-STAT Signaling in the Anti-proliferative Effects of Dietary Flavonoid-"Ashwagandha" in Prostate Cancer Cells. Evid. Based Complement. Alternat. Med. 7: 177-187. http://dx.doi.org/10.1093/ecam/nem184 PMid:18955307 PMCid:2862933   Balda MS and Matter K (2003). Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol. 13: 310-318. http://dx.doi.org/10.1016/S0962-8924(03)00105-3   Brown BM (1975). A Method for combining non-independent, one-sided tests of significance. Biometrics 31: 987-992. http://dx.doi.org/10.2307/2529826   Chandran UR, Ma C, Dhir R, Bisceglia M, et al. (2007). Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64. http://dx.doi.org/10.1186/1471-2407-7-64 PMid:17430594 PMCid:1865555   Endo T, Uzawa K, Suzuki H, Tanzawa H, et al. (2009). Characteristic gene expression profiles of benign prostatic hypertrophy and prostate cancer. Int. J. Oncol. 35: 499-509. PMid:19639170   Franzen CA, Amargo E, Todorovic V, Desai BV, et al. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev. Res. 2: 830-841. http://dx.doi.org/10.1158/1940-6207.CAPR-09-0066 PMid:19737984   Huang D, Casale GP, Tian J, Lele SM, et al. (2010). Udp-glucose dehydrogenase as a novel field-specific candidate biomarker of prostate cancer. Int. J. Cancer 126: 315-327. http://dx.doi.org/10.1002/ijc.24820 PMid:19676054 PMCid:2794918   Iwata T, Schultz D, Hicks J, Hubbard GK, et al. (2010). MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5: e9427. http://dx.doi.org/10.1371/journal.pone.0009427 PMid:20195545 PMCid:2828486   Kaper F, Dornhoefer N and Giaccia AJ (2006). Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res. 66: 1561-1569. http://dx.doi.org/10.1158/0008-5472.CAN-05-3375 PMid:16452213   Lee EK, Cho H and Kim CW (2011). Proteomic analysis of cancer stem cells in human prostate cancer cells. Biochem. Biophys. Res. Commun. 412: 279-285. http://dx.doi.org/10.1016/j.bbrc.2011.07.083 PMid:21820414   Liang CH, Liu Q, Zhou FJ, Gao X, et al. (2007). Etiologic correlations of prostate cancer in Guangdong, China to family history of cancers, and sexual and marital factors-a case-control study. Ai Zheng 26: 484-488. PMid:17672937   Migita T, Ruiz S, Fornari A, Fiorentino M, et al. (2009). Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst. 101: 519-532. http://dx.doi.org/10.1093/jnci/djp030 PMid:19318631 PMCid:2664091   Mitra S, Annamalai L, Chakraborty S, Johnson K, et al. (2006). Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. Mol. Biol. Cell 17: 5400-5416. http://dx.doi.org/10.1091/mbc.E06-04-0280 PMid:17050739 PMCid:1679700   Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34: 267-273. http://dx.doi.org/10.1038/ng1180 PMid:12808457   Nadiminty N, Chun JY, Lou W, Lin X, et al. (2008). NF-kappaB2/p52 enhances androgen-independent growth of human LNCaP cells via protection from apoptotic cell death and cell cycle arrest induced by androgen-deprivation. Prostate 68: 1725-1733. http://dx.doi.org/10.1002/pros.20839 PMid:18781579   Nadiminty N, Dutt S, Tepper C and Gao AC (2010). Microarray analysis reveals potential target genes of NF-kappaB2/ p52 in LNCaP prostate cancer cells. Prostate 70: 276-287. PMid:19827050   Nanni S, Priolo C, Grasselli A, D'Eletto M, et al. (2006). Epithelial-restricted gene profile of primary cultures from human prostate tumors: a molecular approach to predict clinical behavior of prostate cancer. Mol. Cancer Res. 4: 79-92. http://dx.doi.org/10.1158/1541-7786.MCR-05-0098 PMid:16513839   Ouyang DY, Ji YH, Saltis M, Xu LH, et al. (2011). Valproic acid synergistically enhances the cytotoxicity of gossypol in DU145 prostate cancer cells: an iTRTAQ-based quantitative proteomic analysis. J. Proteomics 74: 2180-2193. http://dx.doi.org/10.1016/j.jprot.2011.06.016 PMid:21726675   Pettazzoni P, Ciamporcero E, Medana C, Pizzimenti S, et al. (2011). Nuclear factor erythroid 2-related factor-2 activity controls 4-hydroxynonenal metabolism and activity in prostate cancer cells. Free Radic. Biol. Med. 51: 1610-1618. http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.009 PMid:21816220   Rebbeck TR, Rennert H, Walker AH, Panossian S, et al. (2008). Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int. J. Cancer 123: 1385-1389. http://dx.doi.org/10.1002/ijc.23687 PMid:18566991 PMCid:2700293   Revenu C, Athman R, Robine S and Louvard D (2004). The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5: 635-646. http://dx.doi.org/10.1038/nrm1437 PMid:15366707   Romanuik TL, Ueda T, Le N, Haile S, et al. (2009). Novel biomarkers for prostate cancer including noncoding transcripts. Am. J. Pathol. 175: 2264-2276. http://dx.doi.org/10.2353/ajpath.2009.080868 PMid:19893039 PMCid:2789638   Shah GV, Thomas S, Muralidharan A, Liu Y, et al. (2008). Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways. Endocr. Relat. Cancer 15: 953-964. http://dx.doi.org/10.1677/ERC-08-0136 PMid:18784182   Singh D, Febbo PG, Ross K, Jackson DG, et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1: 203-209. http://dx.doi.org/10.1016/S1535-6108(02)00030-2   Skvortsova I, Skvortsov S, Stasyk T, Raju U, et al. (2008). Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8: 4521-4533. http://dx.doi.org/10.1002/pmic.200800113 PMid:18821526   Song K, Wang H, Krebs TL, Wang B, et al. (2010). DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol. Endocrinol. 24: 2019-2029. http://dx.doi.org/10.1210/me.2010-0165 PMid:20739403 PMCid:2954637   Suarez-Farinas M, Lowes MA, Zaba LC and Krueger JG (2010). Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One 5: e10247. http://dx.doi.org/10.1371/journal.pone.0010247 PMid:20422035 PMCid:2857878   Subramanian A, Tamayo P, Mootha VK, Mukherjee S, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102: 15545-15550. http://dx.doi.org/10.1073/pnas.0506580102 PMid:16199517 PMCid:1239896   Takeda K and Ichijo H (2002). Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7: 1099-1111. http://dx.doi.org/10.1046/j.1365-2443.2002.00591.x PMid:12390245   Tate AW, Lung T, Radhakrishnan A, Lim SD, et al. (2006). Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66: 19-31. http://dx.doi.org/10.1002/pros.20317 PMid:16114058   Veeramani S, Igawa T, Yuan TC, Lin FF, et al. (2005). Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene 24: 7203-7212. http://dx.doi.org/10.1038/sj.onc.1208852 PMid:16170380   Vellaichamy A, Sreekumar A, Strahler JR, Rajendiran T, et al. (2009). Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One 4: e7075. http://dx.doi.org/10.1371/journal.pone.0007075 PMid:19763266 PMCid:2740864   Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, et al. (2010). Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 70: 443-455. PMid:19902470 PMCid:2935631   Wallace TA, Prueitt RL, Yi M, Howe TM, et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68: 927-936. http://dx.doi.org/10.1158/0008-5472.CAN-07-2608 PMid:18245496   Wu T, Giovannucci E, Welge J, Mallick P, et al. (2011). Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br. J. Cancer 105: 65-73. http://dx.doi.org/10.1038/bjc.2011.143 PMid:21654682 PMCid:3137397   Yang J, Wahdan-Alaswad R and Danielpour D (2009). Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Cancer Res. 69: 2185-2190. http://dx.doi.org/10.1158/0008-5472.CAN-08-3961 PMid:19276350 PMCid:3345028   Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, et al. (2008). DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68: 8954-8967. http://dx.doi.org/10.1158/0008-5472.CAN-07-6088 PMid:18974140 PMCid:2577392