Publications

Found 5 results
Filters: Author is H.W. Cui  [Clear All Filters]
2012
L. P. Wang, Zhao, L. R., Cui, H. W., Yan, M. R., Yang, L., and Su, X. L., Association between PPARγ2 Pro12Ala polymorphism and myocardial infarction and obesity in Han Chinese in Hohhot, China, vol. 11, pp. 2929-2938, 2012.
Akiyama TE, Sakai S, Lambert G, Nicol CJ, et al. (2002). Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol. Cell Biol. 22: 2607-2619. http://dx.doi.org/10.1128/MCB.22.8.2607-2619.2002 PMid:11909955 PMCid:133709   Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, et al. (2000). The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26: 76-80. http://dx.doi.org/10.1038/79216 PMid:10973253   Beamer BA, Yen CJ, Andersen RE, Muller D, et al. (1998). Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 gene with obesity in two Caucasian populations. Diabetes 47: 1806-1808. http://dx.doi.org/10.2337/diabetes.47.11.1806 PMid:9792554   Black MH, Fingerlin TE, Allayee H, Zhang W, et al. (2008). Evidence of interaction between PPARG2 and HNF4A contributing to variation in insulin sensitivity in Mexican Americans. Diabetes 57: 1048-1056. http://dx.doi.org/10.2337/db07-0848 PMid:18162503   Bouhlel MA, Derudas B, Rigamonti E, Dievart R, et al. (2007). PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6: 137-143. http://dx.doi.org/10.1016/j.cmet.2007.06.010 PMid:17681149   Danawati CW, Nagata M, Moriyama H, Hara K, et al. (2005). A possible association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma2 gene with obesity in native Javanese in Indonesia. Diabetes Metab. Res. Rev. 21: 465-469. http://dx.doi.org/10.1002/dmrr.543 PMid:15739197   Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, et al. (1998). A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 20: 284-287. http://dx.doi.org/10.1038/3099 PMid:9806549   Ghoussaini M, Meyre D, Lobbens S, Charpentier G, et al. (2005). Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC Med. Genet. 6: 11. http://dx.doi.org/10.1186/1471-2350-6-11 PMid:15784141 PMCid:1084346   Holvoet P (2008). Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 70: 193-219. PMid:18669160   Hsueh WA and Bruemmer D (2004). Peroxisome proliferator-activated receptor gamma: implications for cardiovascular disease. Hypertension 43: 297-305. http://dx.doi.org/10.1161/01.HYP.0000113626.76571.5b PMid:14732733   Hu Q, Zhang XJ, Liu CX, Wang XP, et al. (2010). PPARgamma1-induced caveolin-1 enhances cholesterol efflux and attenuates atherosclerosis in apolipoprotein E-deficient mice. J. Vasc. Res. 47: 69-79. http://dx.doi.org/10.1159/000235927 PMid:19729954   Issemann I and Green S (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645-650. http://dx.doi.org/10.1038/347645a0 PMid:2129546   Iwai M, Kanno H, Senba I, Nakaoka H, et al. (2011). Irbesartan increased PPARgamma activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction. Biochem. Biophys. Res. Commun. 406: 123-126. http://dx.doi.org/10.1016/j.bbrc.2011.02.007 PMid:21296052   Ji Y, Liu J, Wang Z, Liu N, et al. (2009). PPARgamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab. Invest. 89: 887-902. http://dx.doi.org/10.1038/labinvest.2009.45 PMid:19451898   Kagawa Y, Yanagisawa Y, Hasegawa K, Suzuki H, et al. (2002). Single nucleotide polymorphisms of thrifty genes for energy metabolism: evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem. Biophys. Res. Commun. 295: 207-222. http://dx.doi.org/10.1016/S0006-291X(02)00680-0   Kim KS, Choi SM, Shin SU, Yang HS, et al. (2004). Effects of peroxisome proliferator-activated receptor-gamma 2 Pro12Ala polymorphism on body fat distribution in female Korean subjects. Metabolism 53: 1538-1543. http://dx.doi.org/10.1016/j.metabol.2004.06.019 PMid:15562396   Kolehmainen M, Uusitupa MI, Alhava E, Laakso M, et al. (2003). Effect of the Pro12Ala polymorphism in the peroxisome proliferator-activated receptor (PPAR) gamma2 gene on the expression of PPARgamma target genes in adipose tissue of massively obese subjects. J. Clin. Endocrinol. Metab. 88: 1717-1722. http://dx.doi.org/10.1210/jc.2002-020603 PMid:12679463   Liu L, Liu L, Ding Y, Huang Z, et al. (2001). Ethnic and environmental differences in various markers of dietary intake and blood pressure among Chinese Han and three other minority peoples of China: results from the WHO Cardiovascular Diseases and Alimentary Comparison (CARDIAC) Study. Hypertens. Res. 24: 315-322. http://dx.doi.org/10.1291/hypres.24.315 PMid:11409657   Masud S and Ye S (2003). Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J. Med. Genet. 40: 773-780. http://dx.doi.org/10.1136/jmg.40.10.773 PMid:14569127 PMCid:1735275   McDermott MM (2007). The international pandemic of chronic cardiovascular disease. JAMA 297: 1253-1255. http://dx.doi.org/10.1001/jama.297.11.1253 PMid:17374819   Meirhaeghe A, Fajas L, Helbecque N, Cottel D, et al. (2000). Impact of the peroxisome proliferator activated receptor gamma2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 24: 195-199. http://dx.doi.org/10.1038/sj.ijo.0801112 PMid:10702770   Miyazaki Y, Mahankali A, Matsuda M, Glass L, et al. (2001). Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 24: 710-719. http://dx.doi.org/10.2337/diacare.24.4.710 PMid:11315836   Moran CS, Cullen B, Campbell JH and Golledge J (2009). Interaction between angiotensin II, osteoprotegerin, and peroxisome proliferator-activated receptor-gamma in abdominal aortic aneurysm. J. Vasc. Res. 46: 209-217. http://dx.doi.org/10.1159/000163019 PMid:18931513   Mori H, Ikegami H, Kawaguchi Y, Seino S, et al. (2001). The Pro12 →Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 50: 891-894. http://dx.doi.org/10.2337/diabetes.50.4.891 PMid:11289058   Mori Y, Kim-Motoyama H, Katakura T, Yasuda K, et al. (1998). Effect of the Pro12Ala variant of the human peroxisome proliferator-activated receptor gamma 2 gene on adiposity, fat distribution, and insulin sensitivity in Japanese men. Biochem. Biophys. Res. Commun. 251: 195-198. http://dx.doi.org/10.1006/bbrc.1998.9421 PMid:9790929   Pan XF, Song XB, Wang LL, Li LX, et al. (2009). Association of the Pro12Ala polymorphism in peroxisome proliferators activated receptor-gamma gene with rheumatoid arthritis in Sichuan Province of China. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 87-90. PMid:19199260   Ren Y, Sun C, Sun Y, Tan H, et al. (2009). PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul. Pharmacol. 51: 169-174. http://dx.doi.org/10.1016/j.vph.2009.06.004 PMid:19540934   Ridker PM, Cook NR, Cheng S, Erlich HA, et al. (2003). Alanine for proline substitution in the peroxisome proliferator-activated receptor gamma-2 (PPARG2) gene and the risk of incident myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23: 859-863. http://dx.doi.org/10.1161/01.ATV.0000068680.19521.34 PMid:12663371   Rose GA and Blackburn H (1982). Cardiovascular Survey Methods. World Health Organization. WHO Monograph Series, Geneva.   Schaffler A, Barth N, Schmitz G, Zietz B, et al. (2001). Frequency and significance of Pro12Ala and Pro115Gln polymorphism in gene for peroxisome proliferation-activated receptor-gamma regarding metabolic parameters in a Caucasian cohort. Endocrine. 14: 369-373. http://dx.doi.org/10.1385/ENDO:14:3:369   Stefanski A, Majkowska L, Ciechanowicz A, Frankow M, et al. (2006). Lack of association between the Pro12Ala polymorphism in PPAR-gamma2 gene and body weight changes, insulin resistance and chronic diabetic complications in obese patients with type 2 diabetes. Arch. Med. Res. 37: 736-743. http://dx.doi.org/10.1016/j.arcmed.2006.01.009 PMid:16824933   Tamori Y, Masugi J, Nishino N and Kasuga M (2002). Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51: 2045-2055. http://dx.doi.org/10.2337/diabetes.51.7.2045 PMid:12086932   Tavares V, Hirata RD, Rodrigues AC, Monte O, et al. (2005). Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes. Metab. 7: 605-611. http://dx.doi.org/10.1111/j.1463-1326.2004.00453.x PMid:16050954   Wang G, Wei J, Guan Y, Jin N, et al. (2005). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces clinical inflammatory responses in type 2 diabetes with coronary artery disease after coronary angioplasty. Metabolism 54: 590-597. http://dx.doi.org/10.1016/j.metabol.2004.11.017 PMid:15877288   Wei Q, Jacobs DR, Jr., Schreiner PJ, Siscovick DS, et al. (2006). Patterns of association between PPARgamma genetic variation and indices of adiposity and insulin action in African-Americans and whites: the CARDIA Study. J. Mol. Med. 84: 955-965. http://dx.doi.org/10.1007/s00109-006-0088-7 PMid:16955276   Yamamoto Y, Hirose H, Miyashita K, Nishikai K, et al. (2002). PPAR(gamma)2 gene Pro12Ala polymorphism may influence serum level of an adipocyte-derived protein, adiponectin, in the Japanese population. Metabolism 51: 1407- 1409. http://dx.doi.org/10.1053/meta.2002.35586 PMid:12404189   Yen CJ, Beamer BA, Negri C, Silver K, et al. (1997). Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 241: 270-274. http://dx.doi.org/10.1006/bbrc.1997.7798 PMid:9425261   Zafarmand MH, van der Schouw YT, Grobbee DE, de Leeuw PW, et al. (2008). Peroxisome proliferator-activated receptor gamma-2 P12A polymorphism and risk of acute myocardial infarction, coronary heart disease and ischemic stroke: a case-cohort study and meta-analyses. Vasc. Health Risk Manag. 4: 427-436. PMid:18561518 PMCid:2496990
2011
X. L. Su, Dong, H. R., Yan, M. R., Cui, H. W., Yang, L., and Han, F. Q., Association between peroxisome proliferator-activated receptor gamma coactivator-1 alpha polymorphism and hypertension in Mongolians in Inner Mongolia, vol. 10, pp. 3930-3936, 2011.
Andersen G, Wegner L, Jensen DP, Glumer C, et al. (2005). PGC-1alpha Gly482Ser polymorphism associates with hypertension among Danish whites. Hypertension 45: 565-570. http://dx.doi.org/10.1161/01.HYP.0000158946.53289.24 PMid:15738346   Bhat A, Koul A, Rai E, Sharma S, et al. (2007). PGC-1alpha Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: a replicate case-control study. Hum. Genet. 121: 609-614. http://dx.doi.org/10.1007/s00439-007-0352-0 PMid:17390150   Chen S, Yan W, Huang J, Yang W, et al. (2004). Peroxisome proliferator-activated receptor-gamma coactivator-1alpha polymorphism is not associated with essential hypertension and type 2 diabetes mellitus in Chinese population. Hypertens. Res. 27: 813-820. http://dx.doi.org/10.1291/hypres.27.813 PMid:15824463   Ek J, Andersen G, Urhammer SA, Gaede PH, et al. (2001). Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 44: 2220-2226. http://dx.doi.org/10.1007/s001250100032 PMid:11793024   Estall JL, Kahn M, Cooper MP, Fisher FM, et al. (2009). Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 58: 1499-1508. http://dx.doi.org/10.2337/db08-1571 PMid:19366863 PMCid:2699879   Esterbauer H, Oberkofler H, Krempler F and Patsch W (1999). Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62: 98-102. http://dx.doi.org/10.1006/geno.1999.5977 PMid:10585775   Franks PW, Barroso I, Luan J, Ekelund U, et al. (2003). PGC-1alpha genotype modifies the association of volitional energy expenditure with [OV0312]O2 max. Med. Sci. Sports Exerc. 35: 1998-2004. http://dx.doi.org/10.1249/01.MSS.0000099109.73351.81 PMid:14652494   Gao L, Wang L, Yun H, Su L, et al. (2010). Association of the PPARgamma2 gene Pro12Ala variant with primary hypertension and metabolic lipid disorders in Han Chinese of Inner Mongolia. Genet. Mol. Res. 9: 1312-1320. http://dx.doi.org/10.4238/vol9-3gmr833 PMid:20623456   Hara K, Tobe K, Okada T, Kadowaki H, et al. (2002). A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 45: 740-743. http://dx.doi.org/10.1007/s00125-002-0803-z PMid:12107756   Jang WG, Kim EJ, Park KG, Park YB, et al. (2007). Glucocorticoid receptor mediated repression of human insulin gene expression is regulated by PGC-1alpha. Biochem. Biophys. Res. Commun. 352: 716-721. http://dx.doi.org/10.1016/j.bbrc.2006.11.074 PMid:17150186   Kong X, Wang R, Xue Y, Liu X, et al. (2010). Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PloS One 5: e11707. http://dx.doi.org/10.1371/journal.pone.0011707 PMid:20661474 PMCid:2908542   Lacquemant C, Chikri M, Boutin P, Samson C, et al. (2002). No association between the G482S polymorphism of the proliferator-activated receptor-gamma coactivator-1 (PGC-1) gene and Type II diabetes in French Caucasians. Diabetologia 45: 602-603. http://dx.doi.org/10.1007/s00125-002-0783-z PMid:12032643   Ling C, Del Guerra S, Lupi R, Ronn T, et al. (2008). Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51: 615-622. http://dx.doi.org/10.1007/s00125-007-0916-5 PMid:18270681 PMCid:2270364   Michael LF, Wu Z, Cheatham RB, Puigserver P, et al. (2001). Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98: 3820-3825. http://dx.doi.org/10.1073/pnas.061035098 PMid:11274399 PMCid:31136   Muller YL, Bogardus C, Pedersen O and Baier L (2003). A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes 52: 895-898. http://dx.doi.org/10.2337/diabetes.52.3.895 PMid:12606537   Nelson TL, Fingerlin TE, Moss L, Barmada MM, et al. (2007). The peroxisome proliferator-activated receptor gamma coactivator-1 alpha gene (PGC-1alpha) is not associated with type 2 diabetes mellitus or body mass index among Hispanic and non Hispanic Whites from Colorado. Exp. Clin. Endocrinol. Diabetes 115: 268-275. http://dx.doi.org/10.1055/s-2007-960495 PMid:17479445   Oberkofler H, Holzl B, Esterbauer H, Xie M, et al. (2003). Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with hypertension in middle-aged men. Hypertension 41: 368-372. http://dx.doi.org/10.1161/01.HYP.0000050962.48249.B7 PMid:12574109   Okauchi Y, Iwahashi H, Okita K, Yuan M, et al. (2008). PGC-1alpha Gly482Ser polymorphism is associated with the plasma adiponectin level in type 2 diabetic men. Endocr. J. 55: 991-997. http://dx.doi.org/10.1507/endocrj.K08E-070 PMid:18614852   Puigserver P and Spiegelman BM (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24: 78-90. http://dx.doi.org/10.1210/er.2002-0012 PMid:12588810   Puigserver P, Wu Z, Park CW, Graves R, et al. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839. http://dx.doi.org/10.1016/S0092-8674(00)81410-5   Stumvoll M, Fritsche A, t'Hart LM, Machann J, et al. (2004). The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp. Clin. Endocrinol. Diabetes 112: 253-257. http://dx.doi.org/10.1055/s-2004-817972 PMid:15146371   Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, et al. (2000). Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J. Biol. Chem. 275: 16302-16308. http://dx.doi.org/10.1074/jbc.M001364200 PMid:10748020   Vega RB, Huss JM and Kelly DP (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 20: 1868-1876. http://dx.doi.org/10.1128/MCB.20.5.1868-1876.2000 PMid:10669761 PMCid:85369   Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, et al. (2005). Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet. Med. 22: 1516-1521. http://dx.doi.org/10.1111/j.1464-5491.2005.01709.x PMid:16241916   Wu Z, Puigserver P, Andersson U, Zhang C, et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X   Xie G, Guo D, Li Y, Liang S, et al. (2007). The impact of severity of hypertension on association of PGC-1alpha gene with blood pressure and risk of hypertension. BMC Cardiovasc. Disord. 7: 33. http://dx.doi.org/10.1186/1471-2261-7-33 PMid:17971240 PMCid:2194730   Yoon JC, Puigserver P, Chen G, Donovan J, et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131-138. http://dx.doi.org/10.1038/35093050 PMid:11557972   Yu L and Yang SJ (2010). AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 169: 23-38. http://dx.doi.org/10.1016/j.neuroscience.2010.04.063 PMid:20438809
2010
Z. F. Yang, Cui, H. W., Hasi, T., Jia, S. Q., Gong, M. L., and Su, X. L., Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China, vol. 9, pp. 1844-1851, 2010.
Bertilsson L (1995). Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin. Pharmacokinet. 29: 192-209. http://dx.doi.org/10.2165/00003088-199529030-00005 PMid:8521680   Chen L, Qin S, Xie J, Tang J, et al. (2008). Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 9: 691-702. http://dx.doi.org/10.2217/14622416.9.6.691 PMid:18518848   de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, et al. (1994a). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269: 15419-15422. PMid:8195181   de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, et al. (1994b). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46: 594-598. PMid:7969038   Desta Z, Zhao X, Shin JG and Flockhart DA (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41: 913-958. http://dx.doi.org/10.2165/00003088-200241120-00002 PMid:12222994   Evans WE and Johnson JA (2001). Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu. Rev. Genomics Hum. Genet. 2: 9-39. http://dx.doi.org/10.1146/annurev.genom.2.1.9 PMid:11701642   Gardiner SJ and Begg EJ (2006). Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev. 58: 521-590. http://dx.doi.org/10.1124/pr.58.3.6 PMid:16968950   Goldstein JA (2001). Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 52: 349-355. http://dx.doi.org/10.1046/j.0306-5251.2001.01499.x PMid:11678778 PMCid:2014584   Goldstein JA, Ishizaki T, Chiba K, de Morais SM, et al. (1997). Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7: 59-64. http://dx.doi.org/10.1097/00008571-199702000-00008 PMid:9110363   Goto T, Miura M, Murata A, Terata K, et al. (2010). Standard warfarin dose in a patient with the CYP2C9*3/*3 genotype leads to hematuria. Clin. Chim. Acta 411: 1375-1377. http://dx.doi.org/10.1016/j.cca.2010.04.014 PMid:20420818   Hitchen L (2006). Adverse drug reactions result in 250,000 UK admissions a year. BMJ 332: 1109. http://dx.doi.org/10.1136/bmj.332.7550.1109 PMid:16690649 PMCid:1459569   Kesavan R, Narayan SK and Adithan C (2010). Influence of CYP2C9 and CYP2C19 genetic polymorphisms on phenytoin-induced neurological toxicity in Indian epileptic patients. Eur. J. Clin. Pharmacol. 66: 689-696. http://dx.doi.org/10.1007/s00228-010-0817-2 PMid:20390258   Kimura S, Pastewka J, Gelboin HV and Gonzalez FJ (1987). cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucleic Acids Res. 15: 10053-10054. http://dx.doi.org/10.1093/nar/15.23.10053 PMid:3697070 PMCid:306558   Lee CR, Goldstein JA and Pieper JA (2002). Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12: 251-263. http://dx.doi.org/10.1097/00008571-200204000-00010 PMid:11927841   Leung AY, Chow HC, Kwong YL, Lie AK, et al. (2001). Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients. Blood 98: 2584-2587. http://dx.doi.org/10.1182/blood.V98.8.2584 PMid:11588061   Liou YH, Lin CT, Wu YJ and Wu LS (2006). The high prevalence of the poor and ultrarapid metabolite alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 in Taiwanese population. J. Hum. Genet. 51: 857-863. http://dx.doi.org/10.1007/s10038-006-0034-0 PMid:16924387   Miners JO and Birkett DJ (1998). Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45: 525-538. http://dx.doi.org/10.1046/j.1365-2125.1998.00721.x PMid:9663807 PMCid:1873650   Nasu K, Kubota T and Ishizaki T (1997). Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 7: 405-409. http://dx.doi.org/10.1097/00008571-199710000-00011 PMid:9352578   Niu CY, Luo JY and Hao ZM (2004). Genetic polymorphism analysis of cytochrome P4502C19 in Chinese Uigur and Han populations. Chin. J. Dig. Dis. 5: 76-80. http://dx.doi.org/10.1111/j.1443-9573.2004.00160.x PMid:15612662   Roh HK, Dahl ML, Tybring G, Yamada H, et al. (1996). CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 6: 547-551. http://dx.doi.org/10.1097/00008571-199612000-00008 PMid:9014204   Ross AM, Gao R, Coyne KS, Chen J, et al. (2001). A randomized trial confirming the efficacy of reduced dose recombinant tissue plasminogen activator in a Chinese myocardial infarction population and demonstrating superiority to usual dose urokinase: the TUCC trial. Am. Heart J. 142: 244-247. http://dx.doi.org/10.1067/mhj.2001.116963 PMid:11479462   Sanderson S, Emery J and Higgins J (2005). CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet. Med. 7: 97-104. http://dx.doi.org/10.1097/01.GIM.0000153664.65759.CF PMid:15714076   Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, et al. (1996). The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6: 341-349. http://dx.doi.org/10.1097/00008571-199608000-00007 PMid:8873220   Xie HG, Prasad HC, Kim RB and Stein CM (2002). CYP2C9 allelic variants: ethnic distribution and functional significance. Adv. Drug Deliv. Rev. 54: 1257-1270. http://dx.doi.org/10.1016/S0169-409X(02)00076-5   Yu HC, Chan TY, Critchley JA and Woo KS (1996). Factors determining the maintenance dose of warfarin in Chinese patients. QJM 89: 127-135. http://dx.doi.org/10.1093/qjmed/89.2.127 PMid:8729554   Zhang S, Dong Z, Tang L, Zhou Q, et al. (2002). Cytochrome P450 2C19 gene polymorphism in four Chinese nationality populations. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 19: 52-54. PMid:11836688   Zhou SF, Liu JP and Chowbay B (2009a). Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 41: 89-295. http://dx.doi.org/10.1080/03602530902843483 PMid:19514967   Zhou SF, Zhou ZW, Yang LP and Cai JP (2009b). Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr. Med. Chem. 16: 3480-3675. http://dx.doi.org/10.2174/092986709789057635 PMid:19515014