Publications

Found 14 results
Filters: Author is X.L. Su  [Clear All Filters]
2012
S. M. Ren, Yang, G. L., Liu, C. Z., Zhang, C. X., Shou, Q. H., Yu, S. F., Li, W. C., and Su, X. L., Association between HLA-A and -B polymorphisms and susceptibility to Henoch-Schönlein purpura in Han and Mongolian children from Inner Mongolia, vol. 11, pp. 221-228, 2012.
Amoli MM, Thomson W, Hajeer AH, Calvino MC, et al. (2002). HLA-B35 association with nephritis in Henoch-Schonlein purpura. J. Rheumatol. 29: 948-949. PMid:12022355 Fan YL, Xia GQ, Cao LF, Jie J, et al. (2006). MHC-II (DQ) gene polymorphism and Henoch-Schöenlein purpura. Hei Long Jiang Med. J. 30: 94-96. Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, et al. (2004). Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 104: 1923-1930. http://dx.doi.org/10.1182/blood-2004-03-0803 PMid:15191952 Hughes EH, Collins RW, Kondeatis E, Wallace GR, et al. (2005). Associations of major histocompatibility complex class I chain-related molecule polymorphisms with Behcet’s disease in Caucasian patients. Tissue Antigens 66: 195-199. http://dx.doi.org/10.1111/j.1399-0039.2005.00465.x PMid:16101830 Kawasaki K, Komura H, Nakahara Y, Shiraishi M, et al. (2006). Factor XIII in Henoch-Schönlein purpura with isolated gastrointestinal symptoms. Pediatr. Int. 48: 413-415. http://dx.doi.org/10.1111/j.1442-200X.2006.02232.x PMid:16911090 Liu Y, Sun LW, Li LH, Zhao YL, et al. (2008). Analysis of relevance between Henoch-Schöenlein purpura and HLA-DRB1 in children. Chin. J. Lab. Diagnosis 12: 1375-1377. Luo JM, Sun WB, Huang XG, Li WH, et al. (2008). Correlation between the HLA-A, B alleles polymorphism and hemorrhagic fever with renal syndrome of Han nationality in Zunyi area. Chin. J. Microbiol. Immunol. 24: 430-435. Ozen S, Ruperto N, Dillon MJ, Bagga A, et al. (2006). EULAR/PReS endorsed consensus criteria for the classification of childhood vasculitides. Ann. Rheum. Dis. 65: 936-941. http://dx.doi.org/10.1136/ard.2005.046300 PMid:16322081    PMCid:1798210 Peru H, Soylemezoglu O, Gonen S, Cetinyurek A, et al. (2008). HLA class 1 associations in Henoch Schönlein purpura: increased and decreased frequencies. Clin. Rheumatol. 27: 5-10. http://dx.doi.org/10.1007/s10067-007-0640-z PMid:17487448 Ren SM, Yang GL, Tong LH, Yu HL, et al. (2003). Association between clinical characteristics and HLA-DRB1 in Mongolian and Han children with Henoch-Schönlein purpura. Chin. J. Rheumatol. 7: 469-473. Shen CM, Zhu BF and Li SB (2008). Analysis of gene polymorphism of HLA-A, B, DRB1 of Mongolian in Inner Mongolia. Hereditas 30: 164-168. PMid:18244920 Shin JI, Park JM, Shin YH, Hwang DH, et al. (2006). Predictive factors for nephritis, relapse, and significant proteinuria in childhood Henoch-Schönlein purpura. Scand. J. Rheumatol. 35: 56-60. http://dx.doi.org/10.1080/03009740510026841 PMid:16467044 Soylemezoglu O, Peru H, Gonen S, Cetinyurek A, et al. (2008a). CTLA-4 +49 A/G genotype and HLA-DRB1 polymorphisms in Turkish patients with Henoch-Schönlein purpura. Pediatr. Nephrol. 23: 1239-1244. http://dx.doi.org/10.1007/s00467-008-0837-7 PMid:18449568 Soylemezoglu O, Peru H, Gonen S, Cetinyurek A, et al. (2008b). HLA-DRB1 alleles and Henoch-Schönlein purpura: susceptibility and severity of disease. J. Rheumatol. 35: 1165-1168. PMid:18412308 Sun YP, Song CX, Li SL, Gao XJ, et al. (1984). Comparative study of Chinese human leucocyte antigen. Chin. J. Microbiol. Immunol. 4: 205-211. Volz A, Boyle JM, Cann HM, Cottingham RW, et al. (1994). Report of the second international workshop on human chromosome 6. Genomics 21: 464-472. http://dx.doi.org/10.1006/geno.1994.1302 PMid:8088851 Xu SB, Tao YF, Huang XQ, Chu ZT, et al. (2004). Polymorphism of HLA-DRB1 in Han population in Yunnan and comparison with 9 Han populations. Yi Chuan 26: 787-792. PMid:15640103 Yan CX, Song YP, Lai SP, Lai JH, et al. (2002). Research on HLA-A polymorphism of Chinese Han and Uighur nationality by PCR-SSOP. J. Genet. Genomics 29: 384-389. Yang GL, Ren SM, Shou QH, Su XL, et al. (2007). Susceptibility of HLA-A, B gene to Henoch-Schöenlein purpura in children. Chin. Clin. Med. 23: 850-853. Zhang HB, Gao F, Kang LL and Li SB (2005). Polymorphism of HLA-A, B, DRB1 of Menba population in Tibet. Chin. J. Med. Genet. 22: 344-346.
L. P. Wang, Zhao, L. R., Cui, H. W., Yan, M. R., Yang, L., and Su, X. L., Association between PPARγ2 Pro12Ala polymorphism and myocardial infarction and obesity in Han Chinese in Hohhot, China, vol. 11, pp. 2929-2938, 2012.
Akiyama TE, Sakai S, Lambert G, Nicol CJ, et al. (2002). Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol. Cell Biol. 22: 2607-2619. http://dx.doi.org/10.1128/MCB.22.8.2607-2619.2002 PMid:11909955 PMCid:133709   Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, et al. (2000). The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26: 76-80. http://dx.doi.org/10.1038/79216 PMid:10973253   Beamer BA, Yen CJ, Andersen RE, Muller D, et al. (1998). Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 gene with obesity in two Caucasian populations. Diabetes 47: 1806-1808. http://dx.doi.org/10.2337/diabetes.47.11.1806 PMid:9792554   Black MH, Fingerlin TE, Allayee H, Zhang W, et al. (2008). Evidence of interaction between PPARG2 and HNF4A contributing to variation in insulin sensitivity in Mexican Americans. Diabetes 57: 1048-1056. http://dx.doi.org/10.2337/db07-0848 PMid:18162503   Bouhlel MA, Derudas B, Rigamonti E, Dievart R, et al. (2007). PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6: 137-143. http://dx.doi.org/10.1016/j.cmet.2007.06.010 PMid:17681149   Danawati CW, Nagata M, Moriyama H, Hara K, et al. (2005). A possible association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma2 gene with obesity in native Javanese in Indonesia. Diabetes Metab. Res. Rev. 21: 465-469. http://dx.doi.org/10.1002/dmrr.543 PMid:15739197   Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, et al. (1998). A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 20: 284-287. http://dx.doi.org/10.1038/3099 PMid:9806549   Ghoussaini M, Meyre D, Lobbens S, Charpentier G, et al. (2005). Implication of the Pro12Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC Med. Genet. 6: 11. http://dx.doi.org/10.1186/1471-2350-6-11 PMid:15784141 PMCid:1084346   Holvoet P (2008). Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 70: 193-219. PMid:18669160   Hsueh WA and Bruemmer D (2004). Peroxisome proliferator-activated receptor gamma: implications for cardiovascular disease. Hypertension 43: 297-305. http://dx.doi.org/10.1161/01.HYP.0000113626.76571.5b PMid:14732733   Hu Q, Zhang XJ, Liu CX, Wang XP, et al. (2010). PPARgamma1-induced caveolin-1 enhances cholesterol efflux and attenuates atherosclerosis in apolipoprotein E-deficient mice. J. Vasc. Res. 47: 69-79. http://dx.doi.org/10.1159/000235927 PMid:19729954   Issemann I and Green S (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645-650. http://dx.doi.org/10.1038/347645a0 PMid:2129546   Iwai M, Kanno H, Senba I, Nakaoka H, et al. (2011). Irbesartan increased PPARgamma activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction. Biochem. Biophys. Res. Commun. 406: 123-126. http://dx.doi.org/10.1016/j.bbrc.2011.02.007 PMid:21296052   Ji Y, Liu J, Wang Z, Liu N, et al. (2009). PPARgamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab. Invest. 89: 887-902. http://dx.doi.org/10.1038/labinvest.2009.45 PMid:19451898   Kagawa Y, Yanagisawa Y, Hasegawa K, Suzuki H, et al. (2002). Single nucleotide polymorphisms of thrifty genes for energy metabolism: evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem. Biophys. Res. Commun. 295: 207-222. http://dx.doi.org/10.1016/S0006-291X(02)00680-0   Kim KS, Choi SM, Shin SU, Yang HS, et al. (2004). Effects of peroxisome proliferator-activated receptor-gamma 2 Pro12Ala polymorphism on body fat distribution in female Korean subjects. Metabolism 53: 1538-1543. http://dx.doi.org/10.1016/j.metabol.2004.06.019 PMid:15562396   Kolehmainen M, Uusitupa MI, Alhava E, Laakso M, et al. (2003). Effect of the Pro12Ala polymorphism in the peroxisome proliferator-activated receptor (PPAR) gamma2 gene on the expression of PPARgamma target genes in adipose tissue of massively obese subjects. J. Clin. Endocrinol. Metab. 88: 1717-1722. http://dx.doi.org/10.1210/jc.2002-020603 PMid:12679463   Liu L, Liu L, Ding Y, Huang Z, et al. (2001). Ethnic and environmental differences in various markers of dietary intake and blood pressure among Chinese Han and three other minority peoples of China: results from the WHO Cardiovascular Diseases and Alimentary Comparison (CARDIAC) Study. Hypertens. Res. 24: 315-322. http://dx.doi.org/10.1291/hypres.24.315 PMid:11409657   Masud S and Ye S (2003). Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J. Med. Genet. 40: 773-780. http://dx.doi.org/10.1136/jmg.40.10.773 PMid:14569127 PMCid:1735275   McDermott MM (2007). The international pandemic of chronic cardiovascular disease. JAMA 297: 1253-1255. http://dx.doi.org/10.1001/jama.297.11.1253 PMid:17374819   Meirhaeghe A, Fajas L, Helbecque N, Cottel D, et al. (2000). Impact of the peroxisome proliferator activated receptor gamma2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 24: 195-199. http://dx.doi.org/10.1038/sj.ijo.0801112 PMid:10702770   Miyazaki Y, Mahankali A, Matsuda M, Glass L, et al. (2001). Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 24: 710-719. http://dx.doi.org/10.2337/diacare.24.4.710 PMid:11315836   Moran CS, Cullen B, Campbell JH and Golledge J (2009). Interaction between angiotensin II, osteoprotegerin, and peroxisome proliferator-activated receptor-gamma in abdominal aortic aneurysm. J. Vasc. Res. 46: 209-217. http://dx.doi.org/10.1159/000163019 PMid:18931513   Mori H, Ikegami H, Kawaguchi Y, Seino S, et al. (2001). The Pro12 →Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes 50: 891-894. http://dx.doi.org/10.2337/diabetes.50.4.891 PMid:11289058   Mori Y, Kim-Motoyama H, Katakura T, Yasuda K, et al. (1998). Effect of the Pro12Ala variant of the human peroxisome proliferator-activated receptor gamma 2 gene on adiposity, fat distribution, and insulin sensitivity in Japanese men. Biochem. Biophys. Res. Commun. 251: 195-198. http://dx.doi.org/10.1006/bbrc.1998.9421 PMid:9790929   Pan XF, Song XB, Wang LL, Li LX, et al. (2009). Association of the Pro12Ala polymorphism in peroxisome proliferators activated receptor-gamma gene with rheumatoid arthritis in Sichuan Province of China. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 87-90. PMid:19199260   Ren Y, Sun C, Sun Y, Tan H, et al. (2009). PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul. Pharmacol. 51: 169-174. http://dx.doi.org/10.1016/j.vph.2009.06.004 PMid:19540934   Ridker PM, Cook NR, Cheng S, Erlich HA, et al. (2003). Alanine for proline substitution in the peroxisome proliferator-activated receptor gamma-2 (PPARG2) gene and the risk of incident myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23: 859-863. http://dx.doi.org/10.1161/01.ATV.0000068680.19521.34 PMid:12663371   Rose GA and Blackburn H (1982). Cardiovascular Survey Methods. World Health Organization. WHO Monograph Series, Geneva.   Schaffler A, Barth N, Schmitz G, Zietz B, et al. (2001). Frequency and significance of Pro12Ala and Pro115Gln polymorphism in gene for peroxisome proliferation-activated receptor-gamma regarding metabolic parameters in a Caucasian cohort. Endocrine. 14: 369-373. http://dx.doi.org/10.1385/ENDO:14:3:369   Stefanski A, Majkowska L, Ciechanowicz A, Frankow M, et al. (2006). Lack of association between the Pro12Ala polymorphism in PPAR-gamma2 gene and body weight changes, insulin resistance and chronic diabetic complications in obese patients with type 2 diabetes. Arch. Med. Res. 37: 736-743. http://dx.doi.org/10.1016/j.arcmed.2006.01.009 PMid:16824933   Tamori Y, Masugi J, Nishino N and Kasuga M (2002). Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51: 2045-2055. http://dx.doi.org/10.2337/diabetes.51.7.2045 PMid:12086932   Tavares V, Hirata RD, Rodrigues AC, Monte O, et al. (2005). Association between Pro12Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes. Metab. 7: 605-611. http://dx.doi.org/10.1111/j.1463-1326.2004.00453.x PMid:16050954   Wang G, Wei J, Guan Y, Jin N, et al. (2005). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces clinical inflammatory responses in type 2 diabetes with coronary artery disease after coronary angioplasty. Metabolism 54: 590-597. http://dx.doi.org/10.1016/j.metabol.2004.11.017 PMid:15877288   Wei Q, Jacobs DR, Jr., Schreiner PJ, Siscovick DS, et al. (2006). Patterns of association between PPARgamma genetic variation and indices of adiposity and insulin action in African-Americans and whites: the CARDIA Study. J. Mol. Med. 84: 955-965. http://dx.doi.org/10.1007/s00109-006-0088-7 PMid:16955276   Yamamoto Y, Hirose H, Miyashita K, Nishikai K, et al. (2002). PPAR(gamma)2 gene Pro12Ala polymorphism may influence serum level of an adipocyte-derived protein, adiponectin, in the Japanese population. Metabolism 51: 1407- 1409. http://dx.doi.org/10.1053/meta.2002.35586 PMid:12404189   Yen CJ, Beamer BA, Negri C, Silver K, et al. (1997). Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 241: 270-274. http://dx.doi.org/10.1006/bbrc.1997.7798 PMid:9425261   Zafarmand MH, van der Schouw YT, Grobbee DE, de Leeuw PW, et al. (2008). Peroxisome proliferator-activated receptor gamma-2 P12A polymorphism and risk of acute myocardial infarction, coronary heart disease and ischemic stroke: a case-cohort study and meta-analyses. Vasc. Health Risk Manag. 4: 427-436. PMid:18561518 PMCid:2496990
2011
T. Hasi, Hao, L., Yang, L., and Su, X. L., Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study, vol. 10, pp. 537-543, 2011.
Amamoto K, Okamura T, Tamaki S, Kita Y, et al. (2002). Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens. Res. 25: 857-864. http://dx.doi.org/10.1291/hypres.25.857 PMid:12484509   Beilin LJ (1995). Alcohol, hypertension and cardiovascular disease. J. Hypertens. 13: 939-942. http://dx.doi.org/10.1097/00004872-199509000-00001 PMid:8586827   Chen WJ, Loh EW, Hsu YP and Cheng AT (1997). Alcohol dehydrogenase and aldehyde dehydrogenase genotypes and alcoholism among Taiwanese aborigines. Biol. Psychiatry 41: 703-709. http://dx.doi.org/10.1016/S0006-3223(96)00072-8   Chen CC, Lu RB, Chen YC, Wang MF, et al. (1999). Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am. J. Hum. Genet. 65: 795-807. http://dx.doi.org/10.1086/302540 PMid:10441588 PMCid:1377988   Chen L, Davey SG, Harbord RM and Lewis SJ (2008). Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS. Med. 5: e52. http://dx.doi.org/10.1371/journal.pmed.0050052 PMid:18318597 PMCid:2265305   Ferguson RA and Goldberg DM (1997). Genetic markers of alcohol abuse. Clin. Chim. Acta 257: 199-250. http://dx.doi.org/10.1016/S0009-8981(96)06444-3   Hui P, Nakayama T, Morita A, Sato N, et al. (2007). Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens. Res. 30: 585-592. http://dx.doi.org/10.1291/hypres.30.585 PMid:17785925   Itoh T, Matsumoto M, Nakamura M, Okada A, et al. (1997). Effects of daily alcohol intake on the blood pressure differ depending on an individual's sensitivity to alcohol: oriental flushing as a sign to stop drinking for health reasons. J. Hypertens. 15: 1211-1217. http://dx.doi.org/10.1097/00004872-199715110-00004 PMid:9383169   Minami J, Todoroki M, Ishimitsu T, Yamamoto H, et al. (2002). Effects of alcohol intake on ambulatory blood pressure, heart rate, and heart rate variability in Japanese men with different ALDH2 genotypes. J. Hum. Hypertens. 16: 345-351. http://dx.doi.org/10.1038/sj.jhh.1001381 PMid:12082496   Morimoto K and Takeshita T (1996). Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes. Environ. Health Perspect. 104 (Suppl 3): 563-567. PMid:8781384 PMCid:1469639   Nishiyori A, Shibata A, Ogimoto I, Uchimura N, et al. (2005). Alcohol drinking frequency is more directly associated with alcohol use disorder than alcohol metabolizing enzymes among male Japanese. Psychiatry Clin. Neurosci. 59: 38-44. http://dx.doi.org/10.1111/j.1440-1819.2005.01329.x PMid:15679538   Saito K, Yokoyama T, Yoshiike N, Date C, et al. (2003). Do the ethanol metabolizing enzymes modify the relationship between alcohol consumption and blood pressure? J. Hypertens. 21: 1097-1105. http://dx.doi.org/10.1097/00004872-200306000-00009 PMid:12777946   Takagi S, Baba S, Iwai N, Fukuda M, et al. (2001). The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens. Res. 24: 365-370. http://dx.doi.org/10.1291/hypres.24.365 PMid:11510748   Tsuchihashi-Makaya M, Serizawa M, Yanai K, Katsuya T, et al. (2009). Gene-environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population. Hypertens. Res. 32: 207-213. http://dx.doi.org/10.1038/hr.2009.3 PMid:19262484   Wang D (2005). Report on Nutrition and Health Survey of Chinese, 2002 Comprehensive Report. People's Medical Publishing House, Beijing,   Yamamoto K, Ueno Y, Mizoi Y and Tatsuno Y (1993). Genetic polymorphism of alcohol and aldehyde dehydrogenase and the effects on alcohol metabolism. Arukoru Kenkyu to Yakubutsu Izon 28: 13-25. PMid:8512495
X. L. Su, Dong, H. R., Yan, M. R., Cui, H. W., Yang, L., and Han, F. Q., Association between peroxisome proliferator-activated receptor gamma coactivator-1 alpha polymorphism and hypertension in Mongolians in Inner Mongolia, vol. 10, pp. 3930-3936, 2011.
Andersen G, Wegner L, Jensen DP, Glumer C, et al. (2005). PGC-1alpha Gly482Ser polymorphism associates with hypertension among Danish whites. Hypertension 45: 565-570. http://dx.doi.org/10.1161/01.HYP.0000158946.53289.24 PMid:15738346   Bhat A, Koul A, Rai E, Sharma S, et al. (2007). PGC-1alpha Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: a replicate case-control study. Hum. Genet. 121: 609-614. http://dx.doi.org/10.1007/s00439-007-0352-0 PMid:17390150   Chen S, Yan W, Huang J, Yang W, et al. (2004). Peroxisome proliferator-activated receptor-gamma coactivator-1alpha polymorphism is not associated with essential hypertension and type 2 diabetes mellitus in Chinese population. Hypertens. Res. 27: 813-820. http://dx.doi.org/10.1291/hypres.27.813 PMid:15824463   Ek J, Andersen G, Urhammer SA, Gaede PH, et al. (2001). Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 44: 2220-2226. http://dx.doi.org/10.1007/s001250100032 PMid:11793024   Estall JL, Kahn M, Cooper MP, Fisher FM, et al. (2009). Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 58: 1499-1508. http://dx.doi.org/10.2337/db08-1571 PMid:19366863 PMCid:2699879   Esterbauer H, Oberkofler H, Krempler F and Patsch W (1999). Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62: 98-102. http://dx.doi.org/10.1006/geno.1999.5977 PMid:10585775   Franks PW, Barroso I, Luan J, Ekelund U, et al. (2003). PGC-1alpha genotype modifies the association of volitional energy expenditure with [OV0312]O2 max. Med. Sci. Sports Exerc. 35: 1998-2004. http://dx.doi.org/10.1249/01.MSS.0000099109.73351.81 PMid:14652494   Gao L, Wang L, Yun H, Su L, et al. (2010). Association of the PPARgamma2 gene Pro12Ala variant with primary hypertension and metabolic lipid disorders in Han Chinese of Inner Mongolia. Genet. Mol. Res. 9: 1312-1320. http://dx.doi.org/10.4238/vol9-3gmr833 PMid:20623456   Hara K, Tobe K, Okada T, Kadowaki H, et al. (2002). A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 45: 740-743. http://dx.doi.org/10.1007/s00125-002-0803-z PMid:12107756   Jang WG, Kim EJ, Park KG, Park YB, et al. (2007). Glucocorticoid receptor mediated repression of human insulin gene expression is regulated by PGC-1alpha. Biochem. Biophys. Res. Commun. 352: 716-721. http://dx.doi.org/10.1016/j.bbrc.2006.11.074 PMid:17150186   Kong X, Wang R, Xue Y, Liu X, et al. (2010). Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PloS One 5: e11707. http://dx.doi.org/10.1371/journal.pone.0011707 PMid:20661474 PMCid:2908542   Lacquemant C, Chikri M, Boutin P, Samson C, et al. (2002). No association between the G482S polymorphism of the proliferator-activated receptor-gamma coactivator-1 (PGC-1) gene and Type II diabetes in French Caucasians. Diabetologia 45: 602-603. http://dx.doi.org/10.1007/s00125-002-0783-z PMid:12032643   Ling C, Del Guerra S, Lupi R, Ronn T, et al. (2008). Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51: 615-622. http://dx.doi.org/10.1007/s00125-007-0916-5 PMid:18270681 PMCid:2270364   Michael LF, Wu Z, Cheatham RB, Puigserver P, et al. (2001). Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98: 3820-3825. http://dx.doi.org/10.1073/pnas.061035098 PMid:11274399 PMCid:31136   Muller YL, Bogardus C, Pedersen O and Baier L (2003). A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes 52: 895-898. http://dx.doi.org/10.2337/diabetes.52.3.895 PMid:12606537   Nelson TL, Fingerlin TE, Moss L, Barmada MM, et al. (2007). The peroxisome proliferator-activated receptor gamma coactivator-1 alpha gene (PGC-1alpha) is not associated with type 2 diabetes mellitus or body mass index among Hispanic and non Hispanic Whites from Colorado. Exp. Clin. Endocrinol. Diabetes 115: 268-275. http://dx.doi.org/10.1055/s-2007-960495 PMid:17479445   Oberkofler H, Holzl B, Esterbauer H, Xie M, et al. (2003). Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with hypertension in middle-aged men. Hypertension 41: 368-372. http://dx.doi.org/10.1161/01.HYP.0000050962.48249.B7 PMid:12574109   Okauchi Y, Iwahashi H, Okita K, Yuan M, et al. (2008). PGC-1alpha Gly482Ser polymorphism is associated with the plasma adiponectin level in type 2 diabetic men. Endocr. J. 55: 991-997. http://dx.doi.org/10.1507/endocrj.K08E-070 PMid:18614852   Puigserver P and Spiegelman BM (2003). Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24: 78-90. http://dx.doi.org/10.1210/er.2002-0012 PMid:12588810   Puigserver P, Wu Z, Park CW, Graves R, et al. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839. http://dx.doi.org/10.1016/S0092-8674(00)81410-5   Stumvoll M, Fritsche A, t'Hart LM, Machann J, et al. (2004). The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp. Clin. Endocrinol. Diabetes 112: 253-257. http://dx.doi.org/10.1055/s-2004-817972 PMid:15146371   Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, et al. (2000). Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J. Biol. Chem. 275: 16302-16308. http://dx.doi.org/10.1074/jbc.M001364200 PMid:10748020   Vega RB, Huss JM and Kelly DP (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 20: 1868-1876. http://dx.doi.org/10.1128/MCB.20.5.1868-1876.2000 PMid:10669761 PMCid:85369   Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, et al. (2005). Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet. Med. 22: 1516-1521. http://dx.doi.org/10.1111/j.1464-5491.2005.01709.x PMid:16241916   Wu Z, Puigserver P, Andersson U, Zhang C, et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X   Xie G, Guo D, Li Y, Liang S, et al. (2007). The impact of severity of hypertension on association of PGC-1alpha gene with blood pressure and risk of hypertension. BMC Cardiovasc. Disord. 7: 33. http://dx.doi.org/10.1186/1471-2261-7-33 PMid:17971240 PMCid:2194730   Yoon JC, Puigserver P, Chen G, Donovan J, et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131-138. http://dx.doi.org/10.1038/35093050 PMid:11557972   Yu L and Yang SJ (2010). AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 169: 23-38. http://dx.doi.org/10.1016/j.neuroscience.2010.04.063 PMid:20438809
P. Y. Chang, Zhao, L. G., and Su, X. L., Association of TSC gene variants and hypertension in Mongolian and Han populations, vol. 10, pp. 902-909, 2011.
Cardon LR and Abecasis GR (2003). Using haplotype blocks to map human complex trait loci. Trends Genet. 19: 135-140. doi:10.1016/S0168-9525(03)00022-2 Carlson CS, Eberle MA, Rieder MJ, Yi Q, et al. (2004). Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74: 106-120. doi:10.1086/381000 PMid:14681826 Crosio C, Cecconi F, Mariottini P, Cesareni G, et al. (1996). Fugu intron oversize reveals the presence of U15 snoRNA coding sequences in some introns of the ribosomal protein S3 gene. Genome Res. 6: 1227-1231. doi:10.1101/gr.6.12.1227 PMid:8973918 Fava C, Montagnana M, Rosberg L, Burri P, et al. (2008). Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum. Mol. Genet. 17: 413-418. doi:10.1093/hmg/ddm318 PMid:17981812 Jacob-Ferreira AL and Sandrim VC (2007). Endothelial nitric oxide synthase polymorphisms and hypertension: improved clinical evidence derived from haplotype analysis. Int. J. Cardiol. 116: 116. doi:10.1016/j.ijcard.2006.11.048 PMid:17223211 Keszei AP, Tisler A, Backx PH, Andrulis IL, et al. (2007). Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families. J. Hypertens. 25: 2074-2081. doi:10.1097/HJH.0b013e3282a9be1b PMid:17885550 Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127. doi:10.1097/00004872-200411000-00014 PMid:15480096 Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 36: 389-394. PMid:10988270 Miao Z, Gao Y, Bindels RJ, Yu W, et al. (2009). Coexistence of normotensive primary aldosteronism in two patients with Gitelman’s syndrome and novel thiazide-sensitive Na-Cl cotransporter mutations. Eur. J. Endocrinol. 161: 275-283. doi:10.1530/EJE-09-0271 PMid:19451210 Obermüller N, Bernstein P, Velazquez H, Reilly R, et al. (1995). Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269: F900-F910. PMid:8594886 Peters RM and Flack JM (2000). Salt sensitivity and hypertension in African Americans: implications for cardiovascular nurses. Prog. Cardiovasc. Nurs. 15: 138-144. doi:10.1111/j.0889-7204.2000.080404.x PMid:11098526 Plotkin MD, Kaplan MR, Verlander JW, Lee WS, et al. (1996). Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1 in the rat kidney. Kidney Int. 50: 174-183. doi:10.1038/ki.1996.300 PMid:8807586 Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. doi:10.1038/sj.cr.7290272 PMid:15740637 Simon DB, Nelson-Williams C, Bia MJ, Ellison D, et al. (1996). Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12: 24-30. doi:10.1038/ng0196-24 PMid:8528245 Slatkin M (2008). Linkage disequilibrium - understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9: 477-485. doi:10.1038/nrg2361 PMid:18427557 Wang XF, Lin RY, Wang SZ, Zhang LP, et al. (2008). Association study of variants in two ion-channel genes (TSC and CLCNKB) and hypertension in two ethnic groups in Northwest China. Clin. Chim. Acta 388: 95-98. doi:10.1016/j.cca.2007.10.017 PMid:17997379 Xiao Z, Xiao J, Jiang Y, Zhang S, et al. (2006). A novel method based on ligase detection reaction for low abundant YIDD mutants detection in hepatitis B virus. Hepatol. Res. 34: 150-155. doi:10.1016/j.hepres.2005.12.007 PMid:16500145 Zhan YY, Jiang X, Lin G, Li J, et al. (2007). Association of thiazide-sensitive Na+-Cl- cotransporter gene polymorphisms with the risk of essential hypertension. Zhonghua Yi. Xue. Yi. Chuan Xue. Za Zhi. 24: 703-705. PMid:18067089
W. R. Hou, Hou, Y. L., Wu, G. F., Song, Y., Su, X. L., Sun, B., and Li, J., cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca), vol. 10, pp. 1576-1588, 2011.
Adamski FM, Atkins JF and Gesteland RF (1996). Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J. Mol. Biol. 261: 357-371. http://dx.doi.org/10.1006/jmbi.1996.0469 PMid:8780779 Agafonov DE, Kolb VA and Spirin AS (1997). Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl. Acad. Sci. U. S. A. 94: 12892-12897. http://dx.doi.org/10.1073/pnas.94.24.12892 Babu YS, Bugg CE and Cook WJ (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204: 191-204. http://dx.doi.org/10.1016/0022-2836(88)90608-0 Biou V, Shu F and Ramakrishnan V (1995). X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 14: 4056-4064. PMid:7664745    PMCid:394484 Brimacombe R, Gornicki P, Greuer B, Mitchell P, et al. (1990). The three-dimensional structure and function of Escherichia coli ribosomal RNA, as studied by cross-linking techniques. Biochim. Biophys. Acta 1050: 8-13. PMid:2207172 Cho JH, Sato S and Raleigh DP (2004). Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. J. Mol. Biol. 338: 827-837. http://dx.doi.org/10.1016/j.jmb.2004.02.073 PMid:15099748 Chou PY and Fasman GD (1978). Empirical predictions of protein conformation. Annu. Rev. Biochem. 47: 251-276. http://dx.doi.org/10.1146/annurev.bi.47.070178.001343 PMid:354496 Herbst KL, Nichols LM, Gesteland RF and Weiss RB (1994). A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 91: 12525-12529. http://dx.doi.org/10.1073/pnas.91.26.12525 Hoffman DW, Davies C, Gerchman SE, Kycia JH, et al. (1994). Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 13: 205-212. PMid:8306963    PMCid:394794 Hoffman DW, Cameron CS, Davies C, White SW, et al. (1996). Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J. Mol. Biol. 264: 1058-1071. http://dx.doi.org/10.1006/jmbi.1996.0696 PMid:9000630 Horng JC, Moroz V, Rigotti DJ, Fairman R, et al. (2002). Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions. Biochemistry 41: 13360-13369. http://dx.doi.org/10.1021/bi026410c PMid:12416980 Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809 Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, et al. (2000). The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J. Mol. Biol. 297: 1129-1143. http://dx.doi.org/10.1006/jmbi.2000.3621 PMid:10764578 Lillemoen J, Cameron CS and Hoffman DW (1997). The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. J. Mol. Biol. 268: 482-493. http://dx.doi.org/10.1006/jmbi.1997.0982 PMid:9159485 MazurukK, Schoen TJ, Chader GJ, Iwata T, et al. (1996). Structural organization and chromosomal localization of the human ribosomal protein L9 gene. Biochim. Biophys. Acta 1305: 151-162. PMid:8597601 Nag B, Akella SS, Cann PA, Tewari DS, et al. (1991). Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. J. Biol. Chem. 266: 22129-22135. PMid:1939233 O’Neil KT and DeGrado WF (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250: 646-651. Roth HE and Nierhaus KH (1980). Assembly map of the 50-S subunit from Escherichia coli ribosomes, covering the proteins present in the first reconstitution intermediate particle. Eur. J. Biochem. 103: 95-98. http://dx.doi.org/10.1111/j.1432-1033.1980.tb04292.x PMid:6153613 SambrookJ, Fritsch EF and Maniatis T (1989). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Sato S and Raleigh DP (2002). pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J. Mol. Biol. 318: 571-582. http://dx.doi.org/10.1016/S0022-2836(02)00015-3 Sato S, Luisi DL and Raleigh DP (2000). pH jump studies of the folding of the multidomain ribosomal protein L9: the structural organization of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry 39: 4955-4962. http://dx.doi.org/10.1021/bi992608u PMid:10769155 Sato S, Xiang S and Raleigh DP (2001). On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. J. Mol. Biol. 312: 569- 577. http://dx.doi.org/10.1006/jmbi.2001.4968 PMid:11563917 Schmidt A, Hollmann M and Schafer U (1996). A newly identified Minute locus, M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster. Mol. Gen. Genet. 251: 381-387. http://dx.doi.org/10.1007/BF02172530 Shan B, Bhattacharya S, Eliezer D and Raleigh DP (2008). The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state. Biochemistry 47: 9565-9573. http://dx.doi.org/10.1021/bi8006862 PMid:18707127    PMCid:2730213 Voelz VA, Bowman GR, Beauchamp K and Pande VS (2010). Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 132: 1526-1528. http://dx.doi.org/10.1021/ja9090353 PMid:20070076    PMCid:2835335 Walleczek J, Redl B, Stoffler-Meilicke M and Stoffler G (1989). Protein-protein cross-linking of the 50 S ribosomal subunit of Escherichia coli using 2-iminothiolane. Identification of cross-links by immunoblotting techniques. J. Biol. Chem. 264: 4231-4237. PMid:2645289
P. Y. Chang, Zhang, X. G., and Su, X. L., Lack of association of variants of the renal salt reabsorption-related genes SLC12A3 and ClC-Kb and hypertension in Mongolian and Han populations in Inner Mongolia, vol. 10, pp. 948-954, 2011.
Barlassina C, Dal Fiume C, Lanzani C, Manunta P, et al. (2007). Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum. Mol. Genet. 16: 1630-1638. doi:10.1093/hmg/ddm112 PMid:17510212 Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2007). The functional variant of the CLC-Kb channel T481S is not associated with blood pressure or hypertension in Swedes. J. Hypertens. 25: 111-116. doi:10.1097/HJH.0b013e3280103a5a PMid:17143181 Guyton AC (1991). Abnormal renal function and autoregulation in essential hypertension. Hypertension 18: III49-III53. PMid:1937686 Jeck N, Waldegger P, Doroszewicz J, Seyberth H, et al. (2004a). A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int. 65: 190-197. doi:10.1111/j.1523-1755.2004.00363.x PMid:14675050 Jeck N, Waldegger S, Lampert A, Boehmer C, et al. (2004b). Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension 43: 1175-1181. doi:10.1161/01.HYP.0000129824.12959.f0 PMid:15148291 Keszei AP, Tisler A, Backx PH, Andrulis IL, et al. (2007). Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families. J. Hypertens. 25: 2074-2081. doi:10.1097/HJH.0b013e3282a9be1b PMid:17885550 Kokubo Y, Iwai N, Tago N, Inamoto N, et al. (2005). Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population - the Suita Study. Circ. J. 69: 138-142. doi:10.1253/circj.69.138 PMid:15671602 Lifton RP, Gharavi AG and Geller DS (2001). Molecular mechanisms of human hypertension. Cell 104: 545-556. doi:10.1016/S0092-8674(01)00241-0 Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127. doi:10.1097/00004872-200411000-00014 PMid:15480096 Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 36: 389-394. PMid:10988270 Obermüller N, Bernstein P, Velázquez H, Reilly R, et al. (1995). Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269: F900-F910. PMid:8594886 Sile S, Velez DR, Gillani NB, Narsia T, et al. (2009). CLCNKB-T481S and essential hypertension in a Ghanaian population. J. Hypertens. 27: 298-304. doi:10.1097/HJH.0b013e3283140c9e PMid:19226700 Simon DB, Nelson-Williams C, Bia MJ, Ellison D, et al. (1996). Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12: 24-30. doi:10.1038/ng0196-24 PMid:8528245 Speirs HJ, Wang WY, Benjafield AV and Morris BJ (2005). No association with hypertension of CLCNKB and TNFRSF1B polymorphisms at a hypertension locus on chromosome 1p36. J. Hypertens. 23: 1491-1496. doi:10.1097/01.hjh.0000174300.73992.cc PMid:16003175 Zhou BF, Wu XG, Tao SQ, Yang J, et al. (1989). Dietary patterns in 10 groups and the relationship with blood pressure. Collaborative Study Group for Cardiovascular Diseases and their Risk Factors. Chin. Med. J. 102: 257-261.
2010
Z. F. Yang, Cui, H. W., Hasi, T., Jia, S. Q., Gong, M. L., and Su, X. L., Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China, vol. 9, pp. 1844-1851, 2010.
Bertilsson L (1995). Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin. Pharmacokinet. 29: 192-209. http://dx.doi.org/10.2165/00003088-199529030-00005 PMid:8521680   Chen L, Qin S, Xie J, Tang J, et al. (2008). Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 9: 691-702. http://dx.doi.org/10.2217/14622416.9.6.691 PMid:18518848   de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, et al. (1994a). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269: 15419-15422. PMid:8195181   de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, et al. (1994b). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46: 594-598. PMid:7969038   Desta Z, Zhao X, Shin JG and Flockhart DA (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41: 913-958. http://dx.doi.org/10.2165/00003088-200241120-00002 PMid:12222994   Evans WE and Johnson JA (2001). Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu. Rev. Genomics Hum. Genet. 2: 9-39. http://dx.doi.org/10.1146/annurev.genom.2.1.9 PMid:11701642   Gardiner SJ and Begg EJ (2006). Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev. 58: 521-590. http://dx.doi.org/10.1124/pr.58.3.6 PMid:16968950   Goldstein JA (2001). Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 52: 349-355. http://dx.doi.org/10.1046/j.0306-5251.2001.01499.x PMid:11678778 PMCid:2014584   Goldstein JA, Ishizaki T, Chiba K, de Morais SM, et al. (1997). Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7: 59-64. http://dx.doi.org/10.1097/00008571-199702000-00008 PMid:9110363   Goto T, Miura M, Murata A, Terata K, et al. (2010). Standard warfarin dose in a patient with the CYP2C9*3/*3 genotype leads to hematuria. Clin. Chim. Acta 411: 1375-1377. http://dx.doi.org/10.1016/j.cca.2010.04.014 PMid:20420818   Hitchen L (2006). Adverse drug reactions result in 250,000 UK admissions a year. BMJ 332: 1109. http://dx.doi.org/10.1136/bmj.332.7550.1109 PMid:16690649 PMCid:1459569   Kesavan R, Narayan SK and Adithan C (2010). Influence of CYP2C9 and CYP2C19 genetic polymorphisms on phenytoin-induced neurological toxicity in Indian epileptic patients. Eur. J. Clin. Pharmacol. 66: 689-696. http://dx.doi.org/10.1007/s00228-010-0817-2 PMid:20390258   Kimura S, Pastewka J, Gelboin HV and Gonzalez FJ (1987). cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucleic Acids Res. 15: 10053-10054. http://dx.doi.org/10.1093/nar/15.23.10053 PMid:3697070 PMCid:306558   Lee CR, Goldstein JA and Pieper JA (2002). Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12: 251-263. http://dx.doi.org/10.1097/00008571-200204000-00010 PMid:11927841   Leung AY, Chow HC, Kwong YL, Lie AK, et al. (2001). Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients. Blood 98: 2584-2587. http://dx.doi.org/10.1182/blood.V98.8.2584 PMid:11588061   Liou YH, Lin CT, Wu YJ and Wu LS (2006). The high prevalence of the poor and ultrarapid metabolite alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 in Taiwanese population. J. Hum. Genet. 51: 857-863. http://dx.doi.org/10.1007/s10038-006-0034-0 PMid:16924387   Miners JO and Birkett DJ (1998). Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45: 525-538. http://dx.doi.org/10.1046/j.1365-2125.1998.00721.x PMid:9663807 PMCid:1873650   Nasu K, Kubota T and Ishizaki T (1997). Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 7: 405-409. http://dx.doi.org/10.1097/00008571-199710000-00011 PMid:9352578   Niu CY, Luo JY and Hao ZM (2004). Genetic polymorphism analysis of cytochrome P4502C19 in Chinese Uigur and Han populations. Chin. J. Dig. Dis. 5: 76-80. http://dx.doi.org/10.1111/j.1443-9573.2004.00160.x PMid:15612662   Roh HK, Dahl ML, Tybring G, Yamada H, et al. (1996). CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 6: 547-551. http://dx.doi.org/10.1097/00008571-199612000-00008 PMid:9014204   Ross AM, Gao R, Coyne KS, Chen J, et al. (2001). A randomized trial confirming the efficacy of reduced dose recombinant tissue plasminogen activator in a Chinese myocardial infarction population and demonstrating superiority to usual dose urokinase: the TUCC trial. Am. Heart J. 142: 244-247. http://dx.doi.org/10.1067/mhj.2001.116963 PMid:11479462   Sanderson S, Emery J and Higgins J (2005). CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet. Med. 7: 97-104. http://dx.doi.org/10.1097/01.GIM.0000153664.65759.CF PMid:15714076   Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, et al. (1996). The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6: 341-349. http://dx.doi.org/10.1097/00008571-199608000-00007 PMid:8873220   Xie HG, Prasad HC, Kim RB and Stein CM (2002). CYP2C9 allelic variants: ethnic distribution and functional significance. Adv. Drug Deliv. Rev. 54: 1257-1270. http://dx.doi.org/10.1016/S0169-409X(02)00076-5   Yu HC, Chan TY, Critchley JA and Woo KS (1996). Factors determining the maintenance dose of warfarin in Chinese patients. QJM 89: 127-135. http://dx.doi.org/10.1093/qjmed/89.2.127 PMid:8729554   Zhang S, Dong Z, Tang L, Zhou Q, et al. (2002). Cytochrome P450 2C19 gene polymorphism in four Chinese nationality populations. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 19: 52-54. PMid:11836688   Zhou SF, Liu JP and Chowbay B (2009a). Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 41: 89-295. http://dx.doi.org/10.1080/03602530902843483 PMid:19514967   Zhou SF, Zhou ZW, Yang LP and Cai JP (2009b). Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr. Med. Chem. 16: 3480-3675. http://dx.doi.org/10.2174/092986709789057635 PMid:19515014