Publications

Found 49 results
Filters: Author is Q. Wang  [Clear All Filters]
2016
L. Wan, Dai, S. H., Lai, S. Q., Liu, L. Q., Wang, Q., Xu, H., Wang, W. J., Liu, J. C., Wan, L., Dai, S. H., Lai, S. Q., Liu, L. Q., Wang, Q., Xu, H., Wang, W. J., and Liu, J. C., Apoptosis, proliferation, and morphology during vein graft remodeling in rabbits, vol. 15, p. -, 2016.
L. Wan, Dai, S. H., Lai, S. Q., Liu, L. Q., Wang, Q., Xu, H., Wang, W. J., Liu, J. C., Wan, L., Dai, S. H., Lai, S. Q., Liu, L. Q., Wang, Q., Xu, H., Wang, W. J., and Liu, J. C., Apoptosis, proliferation, and morphology during vein graft remodeling in rabbits, vol. 15, p. -, 2016.
Z. Cheng, Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., An, L., Cheng, Z., Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., and An, L., Correlation between polymorphisms in the glucocorticoid receptor gene NR3C1 and susceptibility to asthma in a Chinese population from the Henan Province, vol. 15, p. -, 2016.
Z. Cheng, Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., An, L., Cheng, Z., Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., and An, L., Correlation between polymorphisms in the glucocorticoid receptor gene NR3C1 and susceptibility to asthma in a Chinese population from the Henan Province, vol. 15, p. -, 2016.
Q. Wang, Song, Y. H., Tang, Z., Wang, Z. P., Xu, Q., Bao, N., Wang, Q., Song, Y. H., Tang, Z., Wang, Z. P., Xu, Q., and Bao, N., Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation, vol. 15, p. -, 2016.
Q. Wang, Song, Y. H., Tang, Z., Wang, Z. P., Xu, Q., Bao, N., Wang, Q., Song, Y. H., Tang, Z., Wang, Z. P., Xu, Q., and Bao, N., Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation, vol. 15, p. -, 2016.
Q. Wang, Duan, F., Liu, P., Wang, P. F., Wang, M. X., Wang, Q., Duan, F., Liu, P., Wang, P. F., and Wang, M. X., Expression of anti-SRP19 antibody in muscle tissues from patients with autoimmune necrotizing myopathy, vol. 15, p. -, 2016.
Q. Wang, Duan, F., Liu, P., Wang, P. F., Wang, M. X., Wang, Q., Duan, F., Liu, P., Wang, P. F., and Wang, M. X., Expression of anti-SRP19 antibody in muscle tissues from patients with autoimmune necrotizing myopathy, vol. 15, p. -, 2016.
J. M. Wang, Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., Lu, Y. M., Wang, J. M., Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., Lu, Y. M., Wang, J. M., Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., and Lu, Y. M., Genetic variability and diversity of the main resources of lily assessed via phenotypic characters, pollen morphology, and ISSR markers, vol. 15, p. -, 2016.
J. M. Wang, Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., Lu, Y. M., Wang, J. M., Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., Lu, Y. M., Wang, J. M., Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., and Lu, Y. M., Genetic variability and diversity of the main resources of lily assessed via phenotypic characters, pollen morphology, and ISSR markers, vol. 15, p. -, 2016.
J. M. Wang, Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., Lu, Y. M., Wang, J. M., Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., Lu, Y. M., Wang, J. M., Ma, S. L. Y., Li, W. Q., Wang, Q., Cao, H. Y., Gu, J. H., and Lu, Y. M., Genetic variability and diversity of the main resources of lily assessed via phenotypic characters, pollen morphology, and ISSR markers, vol. 15, p. -, 2016.
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
X. Wang, Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., Liu, D. J., Wang, X., Zhang, F. X., Wang, Z. M., Wang, Q., Wang, H. F., Ren, Y., Tai, D. P., Liang, H., and Liu, D. J., Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002). REFERENCES Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006 Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260 Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200 Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517 Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001 Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680 Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610 Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055 Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1 Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2 Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036 Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639 Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63 Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211 Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271 Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012 Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017 Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329 Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2 Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035 Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159 Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59. Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014 Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946 Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352 Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3 Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384 Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371 Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840 Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016 Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807 Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106 Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262 Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811 Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3 Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224 Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305 Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280. Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
Q. Wang, Wang, N. Y., Cao, X. M., Sun, X., Shen, D., Yuan, M., Chen, J. F., Wang, Q., Wang, N. Y., Cao, X. M., Sun, X., Shen, D., Yuan, M., and Chen, J. F., Increased risk of breast cancer in individuals carrying the TNRC9 rs3803662 C>T polymorphism: a meta-analysis of case-control studies, vol. 15, p. -, 2016.
Q. Wang, Wang, N. Y., Cao, X. M., Sun, X., Shen, D., Yuan, M., Chen, J. F., Wang, Q., Wang, N. Y., Cao, X. M., Sun, X., Shen, D., Yuan, M., and Chen, J. F., Increased risk of breast cancer in individuals carrying the TNRC9 rs3803662 C>T polymorphism: a meta-analysis of case-control studies, vol. 15, p. -, 2016.
Y. Liu, Yu, D., Wang, Q., Liu, H., Guan, S., Liu, M., Liu, Y., Yu, D., Wang, Q., Liu, H., Guan, S., and Liu, M., Isolation and characterization of novel polymorphic microsatellite loci in Perinereis aibuhitensis, vol. 15, p. -, 2016.
Y. Liu, Yu, D., Wang, Q., Liu, H., Guan, S., Liu, M., Liu, Y., Yu, D., Wang, Q., Liu, H., Guan, S., and Liu, M., Isolation and characterization of novel polymorphic microsatellite loci in Perinereis aibuhitensis, vol. 15, p. -, 2016.
X. Wang, Song, Z. G., Huang, D. X., Gao, H., Wang, Q., Wang, Z. P., Wang, X., Song, Z. G., Huang, D. X., Gao, H., Wang, Q., and Wang, Z. P., A single nucleotide polymorphism in GABAA receptor isoforms is potentially responsible for isoflurane sensitivity in mice, vol. 15, p. -, 2016.
X. Wang, Song, Z. G., Huang, D. X., Gao, H., Wang, Q., Wang, Z. P., Wang, X., Song, Z. G., Huang, D. X., Gao, H., Wang, Q., and Wang, Z. P., A single nucleotide polymorphism in GABAA receptor isoforms is potentially responsible for isoflurane sensitivity in mice, vol. 15, p. -, 2016.
2015
H. W. Liu, Xu, R. Y., Sun, R. P., Wang, Q., Liu, J. L., Ge, W., and Yu, Z., Association of PTPN22 gene polymorphism with type 1 diabetes mellitus in Chinese children and adolescents, vol. 14, pp. 63-68, 2015.
Q. Wang, Li, X. L., Xu, X. G., Shi, B. Y., Zhang, Z. M., Li, Z. L., Han, Y., Zhou, W. Q., Chen, C. Q., Cai, M., and Zhang, X., Bortezomib-based treatment of acute antibody-mediated rejection: a case report, vol. 14, pp. 17951-17958, 2015.
Q. Li, Wang, Y. L., Xie, J., Sun, W. J., Zhu, M., He, L., and Wang, Q., Characterization and expression of DDX6 during gametogenesis in the Chinese mitten crab Eriocheir sinensis, vol. 14, pp. 4420-4437, 2015.
Y. Su, Kong, G. L., Su, Y. L., Zhou, Y., Lv, L. F., Wang, Q., Huang, B. P., Zheng, R. Z., Li, Q. Z., Yuan, H. J., and Zhao, Z. G., Correlation analysis of the PNPLA7 gene polymorphism and susceptibility to menstrual disorder, vol. 14, pp. 1733-1740, 2015.
Q. Wang, Zhang, J. G., and Wang, W., Expression and significance of S100P, CD147, and OCT4 in different prostate cancer tissue TNM stages, vol. 14, pp. 6844-6851, 2015.
W. J. Chang, Niu, X. P., Hou, R. X., Li, J. Q., Liu, R. F., Wang, Q., Wang, C. F., Li, X. H., Yin, G. H., and Zhang, K. M., LITAF, HHEX, and DUSP1 expression in mesenchymal stem cells from patients with psoriasis, vol. 14, pp. 15793-15801, 2015.
R. F. Liu, Wang, F., Wang, Q., Zhao, X. C., and Zhang, K. M., Mesenchymal stem cells from skin lesions of psoriasis patients promote proliferation and inhibit apoptosis of HaCaT cells, vol. 14. pp. 17758-17767, 2015.
Y. Zhao, Liang, J., Qi, J. G., Yang, N., Wu, G., Lin, Y. L., Cao, J. Y., Wang, Q., and Wang, Q. C., Meta-analysis of the association between the HNF1B rs4430796 (A>G) polymorphism and risk of prostate cancer based on case-control studies, vol. 14, pp. 7426-7435, 2015.
J. L. Wang, Liu, H. J., Li, F., Yang, W. Y., Wang, J. M., Tan, S. F., and Wang, Q., Multidrug resistance gene (MDR1) polymorphisms may not be directly associated with response to imatinib in chronic myeloid leukemia, vol. 14, pp. 14967-14978, 2015.
W. - X. Zhao, Wang, Q., He, M. - W., Yang, L. - Q., Wu, B. - S., and Ni, J. - X., Radiofrequency thermocoagulation combined with pulsed radiofrequency helps relieve postoperative complications of trigeminal neuralgia, vol. 14, pp. 7616-7623, 2015.
Q. Wang, Cai, Y., Brady, P., and Vermeesch, J. R., Real-time PCR evaluation of cell-free DNA subjected to various storage and shipping conditions, vol. 14, pp. 12797-12804, 2015.
G. R. Yin, Wang, Q., Zhang, X. B., and Wang, S. J., Regulatory role of microRNA184 in osteosarcoma cells, vol. 14, pp. 14246-14252, 2015.
W. L. Xu, Tayerjiang, J. L. T., Zhao, X. B., Wang, H., Wang, Q., and Yuan, H., Study of optimal scheme of spinal image-guided radiotherapy based on expression of caspase-3 in spinal cord neurons by orthogonal design, vol. 14, pp. 3223-3233, 2015.
L. Wan, Yu, B. - T., Wu, Q. - C., Zeng, L., Wang, Q., Tang, J., Xu, Q. - R., Xu, H., Wang, W. - J., Cao, Y. - P., and Liu, J. - C., Transthoracic closure of atrial septal defect and ventricular septal defect without cardiopulmonary bypass, vol. 14, pp. 3760-3766, 2015.
2014
X. J. Fei, Zhu, L. L., Xia, L. M., Peng, W. B., and Wang, Q., Acanthopanax senticosus attenuates inflammation in lipopolysaccharide-induced acute lung injury by inhibiting the NF-κB pathway, vol. 13, pp. 10537-10544, 2014.
Z. Xie, Zhang, M., Zhao, B., Wang, Q., Li, J., Liu, Y. Y., and Chen, Y. H., Advanced oxidation protein products as a biomarker of cutaneous lupus erythematosus complicated by nephritis: a case-control study, vol. 13, pp. 9213-9219, 2014.
J. N. Chen, Jiang, Y. Z., Cen, W. M., Xing, S. H., Zhu, L., Tang, G. Q., Li, M. Z., Jiang, A. A., Lou, P. E., Wen, A. X., Wang, Q., He, T., Zhu, G. X., Xie, M., and Li, X. W., Distribution of H-FABP and ACSL4 gene polymorphisms and their associations with intramuscular fat content and backfat thickness in different pig populations, vol. 13, pp. 6759-6772, 2014.
Y. M. Li, Li, D. J., Xu, X. J., Cui, M., Zhen, H. H., and Wang, Q., Effect of codon optimization on expression levels of human cystatin C in Pichia pastoris, vol. 13, pp. 4990-5000, 2014.
X. Deng, Liu, P., Zhao, Y., and Wang, Q., Expression profiling of CEACAM6 associated with the tumorigenesis and progression in gastric adenocarcinoma, vol. 13, pp. 7686-7697, 2014.
S. - R. Zhu, Li, J. - L., Xie, N., Zhu, L. - M., Wang, Q., and Yue, G. - H., Genetic diversity based on SSR analysis of the cultured snakehead fish, Channa argus, (Channidae) in China, vol. 13, pp. 8046-8054, 2014.
Y. Yan, Wang, Q., Niu, L. L., Deng, J. B., Yu, J. Q., Zhang, Y. Z., Wang, J. X., Yin, M. M., and Tan, X. M., Molecular cloning, characterization, and ioactivity analysis of interleukin 18 in giant panda (Ailuropoda melanoleuca), vol. 13, pp. 9687-9700, 2014.
M. D. Hu, Wang, G. S., Xu, J., Yao, W., He, B. F., Yang, Y., Mao, M., Wang, Q., and Xu, J. C., Separation, purification, and identification of flagellin, and preparation of its antisera, vol. 13, pp. 9161-9170, 2014.
2013
Q. Zhang, Shi, H., Liu, W., Wang, Y., Wang, Q., and Li, H., Differential expression of L-FABP and L-BABP between fat and lean chickens, vol. 12, pp. 4192-4206, 2013.
Q. Wang, Li, M., Xia, L. C., Wen, G., Zu, H., and Gao, M., Genetic analysis of differentiation of T-helper lymphocytes, vol. 12, pp. 972-987, 2013.
Agnello D, Lankford CS, Bream J, Morinobu A, et al. (2003). Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immunol. 23: 147-161. http://dx.doi.org/10.1023/A:1023381027062 PMid:12797537   Chakir H, Wang H, Lefebvre DE, Webb J, et al. (2003). T-bet/GATA-3 ratio as a measure of the Th1/Th2 cytokine profile in mixed cell populations: predominant role of GATA-3. J. Immunol. Methods 278: 157-169. http://dx.doi.org/10.1016/S0022-1759(03)00200-X   Gately MK, Renzetti LM, Magram J, Stern AS, et al. (1998). The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 16: 495-521. http://dx.doi.org/10.1146/annurev.immunol.16.1.495 PMid:9597139   Glimcher LH and Murphy KM (2000). Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14: 1693-1711. PMid:10898785   Ho C and Glimcher LH (2002). Transcription: tantalizing times for T cells. Cell 109: S109-S120. http://dx.doi.org/10.1016/S0092-8674(02)00705-5   Jankovic D, Kullberg MC, Hieny S, Caspar P, et al. (2002). In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting. Immunity 16: 429-439. http://dx.doi.org/10.1016/S1074-7613(02)00278-9   Lametschwandtner G, Biedermann T, Schwarzler C, Gunther C, et al. (2004). Sustained T-bet expression confers polarized human TH2 cells with TH1-like cytokine production and migratory capacities. J. Allergy Clin. Immunol. 113: 987-994. http://dx.doi.org/10.1016/j.jaci.2004.02.004 PMid:15131585   Lighvani AA, Frucht DM, Jankovic D, Yamane H, et al. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U. S. A. 98: 15137-15142. http://dx.doi.org/10.1073/pnas.261570598 PMid:11752460 PMCid:64996   Lohning M, Richter A and Radbruch A (2002). Cytokine memory of T helper lymphocytes. Adv. Immunol. 80: 115-181. http://dx.doi.org/10.1016/S0065-2776(02)80014-1   Lovett-Racke AE, Rocchini AE, Choy J, Northrop SC, et al. (2004). Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21: 719-731. http://dx.doi.org/10.1016/j.immuni.2004.09.010 PMid:15539157   Mariani L, Lohning M, Radbruch A and Hofer T (2004). Transcriptional control networks of cell differentiation: insights from helper T lymphocytes. Prog. Biophys. Mol. Biol. 86: 45-76. http://dx.doi.org/10.1016/j.pbiomolbio.2004.02.007 PMid:15261525   Mullen AC, Hutchins AS, High FA, Lee HW, et al. (2002). Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat. Immunol. 3: 652-658. PMid:12055627   Murphy KM and Reiner SL (2002). The lineage decisions of helper T cells. Nat. Rev. Immunol. 2: 933-944. http://dx.doi.org/10.1038/nri954 PMid:12461566   Nakanishi K, Yoshimoto T, Tsutsui H and Okamura H (2001). Interleukin-18 regulates both Th1 and Th2 responses. Annu. Rev. Immunol. 19: 423-474. http://dx.doi.org/10.1146/annurev.immunol.19.1.423 PMid:11244043   O'Garra A (2000). T-cell differentiation: Commitment factors for T helper cells. Curr. Biol. 10: 492-494. http://dx.doi.org/10.1016/S0960-9822(00)00556-X   O'Garra A and Arai N (2000). The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol. 10: 542-550. http://dx.doi.org/10.1016/S0962-8924(00)01856-0   Ouyang W, Lohning M, Gao Z, Assenmacher M, et al. (2000). Stat6-independent GATA-3 autoactivation directs IL-4- independent Th2 development and commitment. Immunity 12: 27-37. http://dx.doi.org/10.1016/S1074-7613(00)80156-9   Ranganath S and Murphy KM (2001). Structure and specificity of GATA proteins in Th2 development. Mol. Cell Biol. 21: 2716-2725. http://dx.doi.org/10.1128/MCB.21.8.2716-2725.2001 PMid:11283251 PMCid:86902   Robinson DS and Lloyd CM (2002). Asthma: T-bet - a master controller? Curr. Biol. 12: R322-R324. http://dx.doi.org/10.1016/S0960-9822(02)00830-8   Romagnani S (1992). Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int. Arch. Allergy Immunol. 98: 279-285. http://dx.doi.org/10.1159/000236199 PMid:1422257   Romagnani S (2000). The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol. 105: 399-408. http://dx.doi.org/10.1067/mai.2000.104575 PMid:10719286   Smits HH, van Rietschoten JG, Hilkens CM, Sayilir R, et al. (2001). IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur. J. Immunol. 31: 1055-1065. http://dx.doi.org/10.1002/1521-4141(200104)31:4<1055::AID-IMMU1055>3.0.CO;2-7   Szabo SJ, Kim ST, Costa GL, Zhang X, et al. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100: 655-669. http://dx.doi.org/10.1016/S0092-8674(00)80702-3   Szabo SJ, Sullivan BM, Peng SL and Glimcher LH (2003). Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21: 713-758. http://dx.doi.org/10.1146/annurev.immunol.21.120601.140942 PMid:12500979   Viola JP and Rao A (1999). Molecular regulation of cytokine gene expression during the immune response. J. Clin. Immunol. 19: 98-108. http://dx.doi.org/10.1023/A:1020502516196 PMid:10226884   Wang Q, Liu Y and Mo L (2007a). The Evaluation and Prediction of the Effect of AIDS Therapy. Proceeding of the IEEE/ ICME International Conference on Complex Medical Engineering, Beijing, 1591-1596.   Wang Q, Liu Y and Zhang B (2007b). Economic Strategies in the Issue of Controlling AIDS. Proceeding of the IEEE/ ICME International Conference on Complex Medical Engineering, Beijing, 1601-1608.   Wang Q, Liu Y and Pan X (2008). Atmosphere pollutants and mortality rate of respiratory diseases in Beijing. Sci. Total Environ. 391: 143-148. http://dx.doi.org/10.1016/j.scitotenv.2007.10.058 PMid:18061245   Xia L and Zhou C (2007). Phase transition in sequence unique reconstruction. J. Syst. Sci. Complex. 20: 18-29. http://dx.doi.org/10.1007/s11424-007-9001-x   Xia LC, Cram JA, Chen T, Fuhrman JA, et al. (2011). Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS One 6: e27992. http://dx.doi.org/10.1371/journal.pone.0027992 PMid:22162995 PMCid:3232206   Yates A, Callard R and Stark J (2004). Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol. 231: 181-196. http://dx.doi.org/10.1016/j.jtbi.2004.06.013 PMid:15380383   Zhou M and Ouyang W (2003). The function role of GATA-3 in Th1 and Th2 differentiation. Immunol. Res. 28: 25-37. http://dx.doi.org/10.1385/IR:28:1:25   Zhou M, Ouyang W, Gong Q, Katz SG, et al. (2001). Friend of GATA-1 represses GATA-3-dependent activity in CD4+ T cells. J. Exp. Med. 194: 1461-1471. http://dx.doi.org/10.1084/jem.194.10.1461 PMid:11714753 PMCid:2193678   Zhou W and Nakhleh L (2011). Properties of metabolic graphs: biological organization or representation artifacts? BMC Bioinformatics 12: 132. http://dx.doi.org/10.1186/1471-2105-12-132 PMid:21542923 PMCid:3098788   Zu H, Wang Q, Dong M, Ma L, et al. (2012). Compressed sensing based fixed-point DCT image encoding. Adv. Comput. Math. Appl. 2: 259-262.
Y. Zhao, Zhang, T. B., Bao, C. H., Chen, X. Y., Wang, Y., and Wang, Q., Physical properties of gastrointestinal stromal tumors based on atomic force microscope analysis, vol. 12, pp. 5774-5785, 2013.
Y. B. Bao, Wang, Q., Guo, X. M., and Lin, Z. H., Structure and immune expression analysis of hemoglobin genes from the blood clam Tegillarca granosa, vol. 12, pp. 3110-3123, 2013.
2012
Y. Z. Jiang, Zhu, L., Tang, G. Q., Li, M. Z., Jiang, A. A., Cen, W. M., Xing, S. H., Chen, J. N., Wen, A. X., He, T., Wang, Q., Zhu, G. X., Xie, M., and Li, X. W., Carcass and meat quality traits of four commercial pig crossbreeds in China, vol. 11, pp. 4447-4455, 2012.
AOAC (1990). Official Methods of Analysis. 5th edn. Association of Official Analytical Chemists, Washington.   Barton-Gade PA (1987). Meat and fat quality in boars, castrates and gilts. Livest. Prod. Sci. 16: 187-196. http://dx.doi.org/10.1016/0301-6226(87)90019-4   Bejerholm C and Barton-Gade PA (1986). Effect of Intramuscular Fat Level on Eating Quality in Pig Meat. Proceedings of the 32nd European Meeting of Meat Research Workers, Ghent, 389-391.   Bennet GL, Tess WM, Dickerson GE and Johnson RK (1983). Simulation of breed and crossbreeding effects on costs of pork production. J. Anim. Sci. 56: 801-813.   Cameron ND (1990). Genetic and phenotypic parameters for carcass traits, meat and eating quality traits in pigs. Livest. Prod. Sci. 26: 119-135. http://dx.doi.org/10.1016/0301-6226(90)90061-A   Cesar AS, Silveira AC, Freitas PF, Guimaraes EC, et al. (2010). Influence of Chinese breeds on pork quality of commercial pig lines. Genet. Mol. Res. 9: 727-733. http://dx.doi.org/10.4238/vol9-2gmr733 PMid:20449804   Claeys E, De Smet S, Demeyer D, Geers R, et al. (2001). Effect of rate of pH decline on muscle enzyme activities in two pig lines. Meat Sci. 57: 257-263. http://dx.doi.org/10.1016/S0309-1740(00)00100-5   den Hertog-Meischke MJ, van Laack RJ and Smulders FJ (1997). The water-holding capacity of fresh meat. Vet. Q. 19: 175-181. http://dx.doi.org/10.1080/01652176.1997.9694767 PMid:9413116   DeVol DL, McKeith FK, Bechtel PJ, Novakofski J, et al. (1988). Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66: 385-395.   Edwards SA, Wood JD, Moncrieff CB and Porter SJ (1992). Comparison of the Duroc and Large White as terminal sire breeds and their effect on pig meat quality. Anim. Prod. 52: 289-297. http://dx.doi.org/10.1017/S0003356100036928   Ginté B and Vigilijus J (2008). The influence of muscle fibre area on pork quality. Vet. Ir Zootec. T. 42: 34-37.   Gispert M, Font IF, Gil M, Velarde A, et al. (2007). Relationships between carcass quality parameters and genetic types. Meat Sci. 77: 397-404. http://dx.doi.org/10.1016/j.meatsci.2007.04.006 PMid:22061793   Jiang YZ and Li XW (2012). The status and outlook of the pig production market in the world. Chin. J. Anim. Sci. 48: 22-27.   Jiang YZ, Zhu L, Li XW and Si T (2011). Evaluation of the Chinese indigenous pig breed Dahe and crossbred Dawu for growth and carcass characteristics, organ weight, meat quality and intramuscular fatty acid and amino acid composition. Animal 5: 1485-1492. http://dx.doi.org/10.1017/S1751731111000425 PMid:22440295   Jiang YZ, Zhu L, Li FQ and Li XW (2012). Carcass composition and meat quality of indigenous Yanan pigs of China. Genet. Mol. Res. 11: 166-173. http://dx.doi.org/10.4238/2012.January.27.3 PMid:22370883   Jones GF (1998). Genetic Aspects of Comestication, Common Breeds and Their Origin. In: The Genetics of the Pig (Rothschild MF and Ruvinsky A, eds.). CAB International, Wallingford, 38-45.   Klosowska D and Fiedler I (2003). Muscle fibre types in pigs of different genotypes in relation to meat quality. Anim. Sci. 21 (Suppl 1): 49-60.   Lan YH, McKeith FK, Novakofski J and Carr TR (1993). Carcass and muscle characteristics of Yorkshire, Meishan, Yorkshire x Meishan, Meishan x Yorkshire, Fengjing x Yorkshire, and Minzhu x Yorkshire pigs. J. Anim. Sci. 71: 3344-3349. PMid:8294286   Latorre MA, Lázaro R, Gracia MI, Nieto M, et al. (2003a). Effect of sex and terminal sire genotype on performance, carcass characteristics, and meat quality of pigs slaughtered at 117 kg body weight. Meat Sci. 65: 1369-1377. http://dx.doi.org/10.1016/S0309-1740(03)00059-7   Latorre MA, Medel P, Fuentetaja A, Lázaro R, et al. (2003b). Effect of gender, terminal sire line and age at slaughter on performance, carcass characteristics and meat quality of heavy pigs. Anim. Sci. 77: 33-45.   Latorre MA, Pomar C, Faucitano L, Gariépy C, et al. (2008). The relationship within and between production performance and meat quality characteristics in pigs from three different genetic lines. Livest. Sci. 115: 258-267. http://dx.doi.org/10.1016/j.livsci.2007.08.013   Lawrie RA (2005). Ciência da Carne. 6ª ed. Artmed, Porto Alegre.   Legault C, Sellier P, Caritez JC, Dando P, et al. (1985). L'expérimentation sur le porc chinois en France. II: Performances de production en croisement avec les races européennes. Genet. Sel. Evol. 17: 133-152. http://dx.doi.org/10.1186/1297-9686-17-1-133 PMid:22879190 PMCid:2713914   Miao ZG, Wang LJ, Xu ZR, Huang JF, et al. (2009). Developmental changes of carcass composition, meat quality and organs in the Jinhua pig and Landrace. Animal 3: 468-473. http://dx.doi.org/10.1017/S1751731108003613 PMid:22444318   Newcom DW, Stalder KJ, Baas TJ, Goodwin RN, et al. (2004). Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J. Anim. Sci. 82: 2264-2268. PMid:15318723   NPPC (2000). Pork Composition and Quality Assessment Procedures. 1st edn. National Pork Producers Council, Des Moines.   Oliver MA, Gou P, Gispert M and Diestre A (1994). Comparison of five types of pig crosses II. Fresh meat quality and sensory characteristics of dry cured ham. Livest. Prod. Sci. 40: 179-185. http://dx.doi.org/10.1016/0301-6226(94)90047-7   Schäfer A, Rosenvold K, Purslow PP, Andersen HJ, et al. (2002). Physiological and structural events post mortem of importance for drip loss in pork. Meat Sci. 61: 355-366. http://dx.doi.org/10.1016/S0309-1740(01)00205-4   Sellier P (1998). Genetics of Meat and Carcass Traits. In: The Genetics of the Pig (Rothschild MF and Ruvinsky A, eds.). CAB International, Wallingford, 38-45.   van der Wal PG, de Vries AG and Eikelenboom G (1995). Predictive value of slaughterhouse measurements of ultimate pork quality in seven halothane negative Yorkshire populations. Meat Sci. 40: 183-191. http://dx.doi.org/10.1016/0309-1740(94)00028-X   van Laack RL, Kauffman RG, Sybesma W, Smulders FJ, et al. (1994). Is colour brightness (L-value) a reliable indicator of water-holding capacity in porcine muscle? Meat Sci. 38: 193-201. http://dx.doi.org/10.1016/0309-1740(94)90109-0   Verónica A, María del Mar C, Sonia E, Pedro R, et al. (2009). Effect of crossbreeding and gender on meat quality and fatty acid composition in pork. Meat Sci. 81: 209-217. http://dx.doi.org/10.1016/j.meatsci.2008.07.021 PMid:22063984   Wood JD, Enser M, Moncrieff CB and Kempster AJ (1988). Effects of Carcass Fatness and Sex on the Composition and Quality of Pigmeat. Proceedings of 34th International Congress of Meat Science and Technology, Brisbane, 562-564. PMid:3373174   Xiao R-J, Xu Z-R and Chen H-L (1999). Effects of ractopamine at different dietary protein levels on growth performance and carcass characteristics in finishing pigs. Anim. Feed Sci. Technol. 79: 119-127. http://dx.doi.org/10.1016/S0377-8401(98)00282-X   Young LD (1992). Effects of Duroc, Meishan, Fengjing, and Minzhu boars on carcass traits of first-cross barrows. J. Anim. Sci. 70: 2030-2037. PMid:1644675   Young LD (1995). Survival, body weights, feed efficiency, and carcass traits of 3/4 white composite and 1/4 Duroc, 1/4 Meishan, 1/4 Fengjing, or 1/4 Minzhu pigs. J. Anim. Sci. 73: 3534-3542. PMid:8655426   Young LD (1998). Survival, body weights, feed efficiency, and carcass traits of 7/8 White Composite and 1/8 Duroc, 1/8 Meishan, 1/8 Fengjing, or 1/8 Minzhu pigs. J. Anim. Sci. 76: 1550-1558. PMid:9655574
Q. H. Gu, Xiong, B. X., Zhu, Y. T., Wang, Q., and Shi, P. S., Development of 18 microsatellite loci for the freshwater snail Bellamya aeruginosa (Mollusca, Gastropoda), vol. 11, pp. 1449-1453, 2012.
Charbonnel N, Angers B, Rasatavonjizay R, Brémond R, et al. (2002). Exploring the evolutionary aspects of the complex metapopulation dynamics in Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni. J. Evol. Biol. 15: 248-261. http://dx.doi.org/10.1046/j.1420-9101.2002.00381.x   Fauvelot C, Bertozzi F, Costantini F, Airoldi L, et al. (2009). Lower genetic diversity in the limpet Patella caerulea on urban coastal structures compared to natural rocky habitats. Mar. Biol. 156: 2313-2323. http://dx.doi.org/10.1007/s00227-009-1259-1   Han S, Yan S, Chen K, Zhang Z, et al. (2010). 15N isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent. J. Environ. Sci. 22: 242-247. http://dx.doi.org/10.1016/S1001-0742(09)60100-5   Kennington WJ, Lukehurst SS and Johnson MS (2008). Characterization of microsatellite loci for the littorine snail Bembicium vittatum. Mol. Ecol. Resour. 8: 1463-1465. http://dx.doi.org/10.1111/j.1755-0998.2008.02247.x PMid:21586077   Lamberti GA, Gregory SV, Ashkenas LR, Steinman AD, et al. (1989). Productive capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecol. Soc. Am. 70: 1840-1856.   Li XY, Li Y, Zhou SQ and Yan BL (2010). Analysis and evaluation of nutritional composition in two freshwater fingersnails. Food Sci. 31: 276-279.   Liao XL, Wang D, Yu XM, Weitao L, et al. (2007). Characterization of novel microsatellite loci in rare minnow (Gobiocypris rarus) and amplification in closely related species in Gobioninae. Conserv. Genet. 8: 1003-1007. http://dx.doi.org/10.1007/s10592-006-9222-x   Liu K and Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. http://dx.doi.org/10.1093/bioinformatics/bti282 PMid:15705655   Nicot A, Jarne P and David P (2009). Development of polymorphic microsatellite loci in the hermaphroditic freshwater snails Drepanotrema surinamense and Drepanotrema depressissimum. Mol. Ecol. Resour. 9: 897-902. http://dx.doi.org/10.1111/j.1755-0998.2008.02373.x PMid:21564783   Prabhakar AK and Roy SP (2009). Ethno-medicinal uses of some shell fishes by people of Kosi river basin of North-Bihar, India. Ethno-Med. 3: 1-4.   Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x   Wang RX, Xu TJ, Sun YN and He GY (2010). Polymorphic microsatellite loci from two enriched genomic libraries for the genetic analysis of the miiuy croaker, Miichthys miiuy (Sciaenidae). Genet. Mol. Res. 9: 931-934. http://dx.doi.org/10.4238/vol9-2gmr806 PMid:20486088   Xiao S, Ma HT and Yu ZN (2011). Development of 20 novel microsatellite markers in the Hong Kong oyster, Crassostrea hongkongensis. Conserv. Genet. Resour. 3: 413-415. http://dx.doi.org/10.1007/s12686-010-9368-1   Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129: 157.   Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900   Zouros E (1987). On the relation between heterozygosity and heterosis: an evaluation of the evidence from marine mollusks. Isozymes: Curr. Top. Biol. Med. Res. 15: 255-270. PMid:3298157
Y. Wang, Tang, Y., Zhang, M., Cai, F., Qin, J., Wang, Q., Liu, C., Wang, G., Xu, L., Yang, L., Li, J., Wang, Z., and Li, X., Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae), vol. 11, pp. 4711-4719, 2012.
Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654. http://dx.doi.org/10.1073/pnas.0406377102 PMid:15695592 PMCid:548969   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997. http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x   Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871. PMid:11283341 PMCid:135529   Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004   Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71. http://dx.doi.org/10.1105/tpc.108.061309 PMid:19155348 PMCid:2648069   Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567. http://dx.doi.org/10.1139/G10-034 PMid:20616877   Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.   Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252 PMid:16669768   Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388. http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x PMid:21054438   Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383. http://dx.doi.org/10.1016/S0031-9422(03)00377-7   Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322. http://dx.doi.org/10.1016/S0305-1978(03)00074-7   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517. http://dx.doi.org/10.1016/S0022-2836(75)80083-0   Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465. http://dx.doi.org/10.1007/s11101-007-9076-y   Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399. http://dx.doi.org/10.1126/science.1078540 PMid:12532018
2011
D. - A. Fang, Wang, Q., Wang, J., He, L., Liu, L. - H., and Wang, Y., A novel DDX5 gene in the freshwater crayfish Cherax quadricarinatus is highly expressed during ontogenesis and spermatogenesis, vol. 10, pp. 3963-3975, 2011.
Abdelhaleem M (2005). RNA helicases: regulators of differentiation. Clin. Biochem. 38: 499-503. http://dx.doi.org/10.1016/j.clinbiochem.2005.01.010 PMid:15885226 Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917 Barki A, Levi T, Hulata G and Karplus I (1997). Annual cycle spawning and molting in the red-claw crayfish, Cherax quadricarinatus, under laboratory conditions. Aquaculture 157: 239-249. http://dx.doi.org/10.1016/S0044-8486(97)00163-4 Bugnot AB and López Greco LS (2009). Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda Parastacidae). Aquaculture 295: 292-299. http://dx.doi.org/10.1016/j.aquaculture.2009.07.021 Claerhout T, Bendena W, Tobe SS and Borst DW (1996). Characterization of methyl transferase activity in the mandibular organ of the American lobster Homarus americanus. Biol. Bull. 191: 304-308. Cordin O, Banroques J, Tanner NK and Linder P (2006). The DEAD-box protein family of RNA helicases. Gene 367: 17-37. http://dx.doi.org/10.1016/j.gene.2005.10.019 PMid:16337753 Eddy EM (2002). Male germ cell gene expression. Recent Prog. Horm. Res. 57: 103-128. http://dx.doi.org/10.1210/rp.57.1.103 PMid:12017539 Extavour CG (2005). The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev. Biol. 277: 387-402. http://dx.doi.org/10.1016/j.ydbio.2004.09.030 PMid:15617682 Foulks NB and Hoffman DL (1974). The effects of eyestalk ablation and B-ecdysone on RNA synthesis in the androgenic glands of the protandric shrimp, Pandalus platyceros Brandt. Gen. Comp. Endocrinol. 22: 439-447. http://dx.doi.org/10.1016/0016-6480(74)90018-5 Gustafson EA and Wessel GM (2010). DEAD-box helicases: posttranslational regulation and function. Biochem. Biophys. Res. Commun. 395: 1-6. http://dx.doi.org/10.1016/j.bbrc.2010.02.172 PMid:20206133 PMCid:2863303 Heinlein UA (1998). Dead box for the living. J. Pathol. 184: 345-347. http://dx.doi.org/10.1002/(SICI)1096-9896(199804)184:4<345::AID-PATH1243>3.0.CO;2-6 Iggo RD and Lane DP (1989). Nuclear protein p68 is an RNA-dependent ATPase. EMBO J. 8: 1827-1831. PMid:2527746 PMCid:401029 Jost JP, Schwarz S, Hess D and Angliker (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res. 27: 3245-3252. http://dx.doi.org/10.1093/nar/27.16.3245 PMid:10454630 PMCid:148556 Karplus I, Gideon H and Barki A (2003). Shifting the natural spring-summer breeding season of Australian freshwater crayfish Cherax quadricarinatus into winter by environmental manipulations. Aquaculture 220: 277-286. http://dx.doi.org/10.1016/S0044-8486(02)00225-9 Khalaila I, Manor R, Weil S, Granot Y, et al. (2002). The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 127: 147-156. http://dx.doi.org/10.1016/S0016-6480(02)00031-X Lane DP and Hoeffler WK (1980). SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 288: 167-170. http://dx.doi.org/10.1038/288167a0 PMid:6159551 LeMaire L and Heinlein UA (1993). High-level expression in male germ cells of murine P68 RNA helicase mRNA. Life Sci. 52: 917-926. http://dx.doi.org/10.1016/0024-3205(93)90526-9 Li S, Wagner CA, Friesen JA and Borst DW (2003). 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the lobster mandibular organ: regulation by the eyestalk. Gen. Comp. Endocrinol. 134: 147-155. http://dx.doi.org/10.1016/S0016-6480(03)00246-6 Linder P (2006). Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res. 34: 4168-4180. http://dx.doi.org/10.1093/nar/gkl468 PMid:16936318 PMCid:1616962 Liu ZR (2002). p68 RNA helicase is an essential human splicing factor that acts at the U1 snRNA-5ꞌ splice site duplex. Mol. Cell Biol. 22: 5443-5450. http://dx.doi.org/10.1128/MCB.22.15.5443-5450.2002 PMid:12101238 PMCid:133941 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. López Greco LS and Lo Nostro FL (2008). Structural changes of the spermatophore in the freshwater "red claw" crayfish Cherax quadricarinatus (von Martens 1898) (Decapoda Parastacidae). Acta Zool. 89: 149-155. http://dx.doi.org/10.1111/j.1463-6395.2007.00303.x Luo YL, Wu ZX, Chen XX and Shen XH (1999). Histological study on spermary development of Cherax quadricarinatus. J. Huazhong Agric. Univ. 18: 78-79. Marcelo GG, Michel EH and Humberto V (2003). Description of the embryonic development of Cherax quadricarinatus (von Martens 1868) (Decapoda Parastacidae) based on the staging method. Crustaceana 76: 269-280. http://dx.doi.org/10.1163/156854003765911676 McCormick S, Curie C, Eyal Y and Muschietti J (1994). Molecular biology of male gametogenesis. Euphytica 79: 245-250. http://dx.doi.org/10.1007/BF00022525 Meistrich ML, Mohapatra B, Shirley CR and Zhao M (2003). Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111: 483-488. http://dx.doi.org/10.1007/s00412-002-0227-z PMid:12743712 Meng FL, Zhao YL, Chen LQ and Gu ZM (2000). The study of embryonic development of Cherax quadricarinatus I. Morphogenesis of external structures of embryo. Zool. Res. 21: 468-472. Olsen LC, Aasland R and Fjose A (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66: 95-105. http://dx.doi.org/10.1016/S0925-4773(97)00099-3 Parvinen M (2005). The chromatoid body in spermatogenesis. Int. J. Androl 28: 189-201. http://dx.doi.org/10.1111/j.1365-2605.2005.00542.x PMid:16048630 Rocak S and Linder P (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5: 232-241. http://dx.doi.org/10.1038/nrm1335 PMid:14991003 Saffman EE and Lasko P (1999). Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55: 1141-1163. http://dx.doi.org/10.1007/s000180050363 PMid:10442094 Sandhu H, LeMaire L and Heinlein UA (1995). Male germ cell extracts contain proteins binding to the conserved 3'-end of mouse p68 RNA helicase mRNA. Biochem. Biophys. Res. Commun. 214: 632-638. http://dx.doi.org/10.1006/bbrc.1995.2333 PMid:7677776 Schulz RW, de Franca LR, Lareyre JJ, Le GF, et al. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165: 390-411. http://dx.doi.org/10.1016/j.ygcen.2009.02.013 PMid:19348807 Sengoku T, Nureki O, Nakamura A, Kobayashi S, et al. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125: 287-300. http://dx.doi.org/10.1016/j.cell.2006.01.054 PMid:16630817 Seufert DW, Kos R, Erickson CA and Swalla BJ (2000). p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. J. Exp. Zool. 288: 193-204. http://dx.doi.org/10.1002/1097-010X(20001015)288:3<193::AID-JEZ1>3.0.CO;2-V Seydoux G and Braun RE (2006). Pathway to totipotency: lessons from germ cells. Cell 127: 891-904. http://dx.doi.org/10.1016/j.cell.2006.11.016 PMid:17129777 Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, et al. (1998). Expression of the 'dead box' RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J. Pathol. 184: 351-359. http://dx.doi.org/10.1002/(SICI)1096-9896(199804)184:4<351::AID-PATH1235>3.0.CO;2-C Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738