Publications

Found 6 results
Filters: Author is T. Mornkham  [Clear All Filters]
2016
T. Mornkham, Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., and Kurzweil, H., Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGEMENTS The Higher Education Research Promotion, the National Research University Project of Thailand, the Office of the Higher Education Commission through the Food and Functional Food Research Cluster of Khon Kaen University (F-2553-Ph.d-02 and FC1.1.5 PhD), and research funding from Khon Kaen University to the corresponding author are acknowledged for financially support. We thank Assistant Professor Dr. Tawan Remsungnen for his assistance on the preliminary analysis of SSRs, and the journal reviewers for their valuable comments on this manuscript. REFERENCES Adawy SS, Mokhtar MM, Alsamman MA and Sakr MM (2015). Development of EST-SSR annotated database in olive (Oleaeuropaea). IJSR09. Alla NA, Domokos-Szabolcsy É, El-Ramady H, Hodossi S, et al (2014). Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation. Int. J. Hortic. Sci. 20: 131-136. Andersen JR, Lübberstedt T, et al (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 Bassam BJ, Caetano-Anollés G, Gresshoff PM, et al (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Bock DG, Kane NC, Ebert DP, Rieseberg LH, et al (2014). Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201: 1021-1030. http://dx.doi.org/10.1111/nph.12560 Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Chen H, Liu L, Wang L, Wang S, et al (2015). Development and validation of EST-SSR markers from the transcriptome of Adzuki bean (Vigna angularis). PLoS One 10: e0131939. http://dx.doi.org/10.1371/journal.pone.0131939 Debnath SC, et al (2014). Structured diversity using EST-PCR and EST-SSR markers in a set of wild blueberry clones and cultivars. Biochem. Syst. Ecol. 54: 337-347. http://dx.doi.org/10.1016/j.bse.2014.03.018 Excoffier L, Smouse PE, Quattro JM, et al (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Gadaleta A, Giancaspro A, Zacheo S, Nigro D, et al (2011). Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet. Resour. 9: 243-246. http://dx.doi.org/10.1017/S147926211100030X Garcia RAV, Rangel PN, Brondani C, Martins WS, et al (2011). The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet. 12: 41-54. http://dx.doi.org/10.1186/1471-2156-12-41 Gupta SK, Gopalakrishna T, et al (2010). Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53: 508-523. http://dx.doi.org/10.1139/G10-028 Hartl DL and Clark AG (1997). Principle of Population Genetics. 1997. Sinauer Associates, Inc. Hildebrand CE, Torney DC, Wagner RP, et al (1992). Informativeness of polymorphic DNA markers. Los Alamos Sci. 20: 100-102. Huang X, Madan A, et al (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 Johansson E, Prade T, Angelidaki I, Svensson SE, et al (2015). Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. http://dx.doi.org/10.3390/ijms16048997 Ju MM, Ma HC, Xin PY, Zhou ZL, et al (2015). Development and characterization of EST-SSR markers in Bombax ceiba (Malvaceae). Appl. Plant Sci. 3: 1500001. http://dx.doi.org/10.3732/apps.1500001 Jung WY, Lee SS, Kim CW, Kim H-S, et al (2014). RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PLoS One 9: e111982. http://dx.doi.org/10.1371/journal.pone.0111982 Kays SJ and Nottingham SF (2008). Genetic resources, breeding and cultivars. In: Biology and Biochemistry of Jerusalem Artichoke (Taylor and Francis eds.). CRC Press, 149-240. Kiru S, Nasenko I, et al (2010). Use of genetic resources from Jerusalem artichoke collection of N. Vavilov Institute in breeding for bioenergy and health. Agron. Res. 8: 625-632. Kou YX, Zeng J, Liu JQ, Kou YX, et al (2014). Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. J. Agric. Sci. 152: 779-789. http://dx.doi.org/10.1017/S0021859613000476 Kumari M, Grover A, Yadav PV, Arif M, et al (2013). Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genomics 35: 661-670. http://dx.doi.org/10.1007/s13258-013-0118-0 Malfa SL, Currò S, Douglas AB, Brugaletta M, et al (2014). Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochem. Syst. Ecol. 55: 205-211. http://dx.doi.org/10.1016/j.bse.2014.03.022 Merritt BJ, Culley TM, Avanesyan A, Stokes R, et al (2015). An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 3: 1500025. http://dx.doi.org/10.3732/apps.1500025 Mondini L, Noorani A, Pagnotta MA, et al (2009). Assessing plant genetic diversity by molecular tools. Diversity (Basel) 1: 19-35. http://dx.doi.org/10.3390/d1010019 Moose SP, Mumm RH, et al (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147: 969-977. http://dx.doi.org/10.1104/pp.108.118232 Mujaju C, Sehic J, Nybom H, et al (2013). Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am. J. Plant Sci. 4: 1448-1456. http://dx.doi.org/10.4236/ajps.2013.47177 Mullis K, Faloona F, Scharf S, Saiki R, et al (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51: 263-273. http://dx.doi.org/10.1101/SQB.1986.051.01.032 Park YJ, Lee JK, Kim NS, et al (2009). Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14: 4546-4569. http://dx.doi.org/10.3390/molecules14114546 Peakall R, Smouse P, et al (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Peakall R, Smouse PE, et al (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460 Poczai P, Varga I, Laos M, Cseh A, et al (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods 9: 6. http://dx.doi.org/10.1186/1746-4811-9-6 Ramu P, Billot C, Rami JF, Senthilvel S, et al (2013). Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 126: 2051-2064. http://dx.doi.org/10.1007/s00122-013-2117-6 Şelale H, Çelik I, Gültekin V, Allmer J, et al (2013). Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 132: 344-351. http://dx.doi.org/10.1111/pbr.12059 Sokal RR, Michener CD, et al (1958). A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38: 1409-1438. Temnykh S, DeClerck G, Lukashova A, Lipovich L, et al (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. http://dx.doi.org/10.1101/gr.184001 Wangsomnuk PP, Khampa S, Jogloy S, Srivong T, et al (2011a). Assessing genetic structure and relatedness of Jerusalem Artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP Markers. AJPS 2: 753-764. http://dx.doi.org/10.4236/ajps.2011.26090 Wangsomnuk PP, Khampa S, Wangsomnuk P, Jogloy S, et al (2011b). Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genet. Mol. Res. 10: 4012-4025. http://dx.doi.org/10.4238/2011.December.12.4 Wangsomnuk PP, Khampa S, Jogloy S, et al (2015). Exogenous supplementation of growth regulators and temperature improves germination of dormant Jerusalem Artichoke (Helianthus tuberosus L.) seeds under in vitro and in vivo conditions. JABS 9: 23-30. Zhang M, Mao W, Zhang G, Wu F, et al (2014). Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS One 9: e94881. http://dx.doi.org/10.1371/journal.pone.0094881 Zhou Q, Chen TL, Wang YR, Liu ZP, et al (2014). The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochem. Syst. Ecol. 57: 227-230. http://dx.doi.org/10.1016/j.bse.2014.08.023
T. Mornkham, Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., and Kurzweil, H., Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGEMENTS The Higher Education Research Promotion, the National Research University Project of Thailand, the Office of the Higher Education Commission through the Food and Functional Food Research Cluster of Khon Kaen University (F-2553-Ph.d-02 and FC1.1.5 PhD), and research funding from Khon Kaen University to the corresponding author are acknowledged for financially support. We thank Assistant Professor Dr. Tawan Remsungnen for his assistance on the preliminary analysis of SSRs, and the journal reviewers for their valuable comments on this manuscript. REFERENCES Adawy SS, Mokhtar MM, Alsamman MA and Sakr MM (2015). Development of EST-SSR annotated database in olive (Oleaeuropaea). IJSR09. Alla NA, Domokos-Szabolcsy É, El-Ramady H, Hodossi S, et al (2014). Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation. Int. J. Hortic. Sci. 20: 131-136. Andersen JR, Lübberstedt T, et al (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 Bassam BJ, Caetano-Anollés G, Gresshoff PM, et al (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Bock DG, Kane NC, Ebert DP, Rieseberg LH, et al (2014). Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201: 1021-1030. http://dx.doi.org/10.1111/nph.12560 Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Chen H, Liu L, Wang L, Wang S, et al (2015). Development and validation of EST-SSR markers from the transcriptome of Adzuki bean (Vigna angularis). PLoS One 10: e0131939. http://dx.doi.org/10.1371/journal.pone.0131939 Debnath SC, et al (2014). Structured diversity using EST-PCR and EST-SSR markers in a set of wild blueberry clones and cultivars. Biochem. Syst. Ecol. 54: 337-347. http://dx.doi.org/10.1016/j.bse.2014.03.018 Excoffier L, Smouse PE, Quattro JM, et al (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Gadaleta A, Giancaspro A, Zacheo S, Nigro D, et al (2011). Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet. Resour. 9: 243-246. http://dx.doi.org/10.1017/S147926211100030X Garcia RAV, Rangel PN, Brondani C, Martins WS, et al (2011). The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet. 12: 41-54. http://dx.doi.org/10.1186/1471-2156-12-41 Gupta SK, Gopalakrishna T, et al (2010). Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53: 508-523. http://dx.doi.org/10.1139/G10-028 Hartl DL and Clark AG (1997). Principle of Population Genetics. 1997. Sinauer Associates, Inc. Hildebrand CE, Torney DC, Wagner RP, et al (1992). Informativeness of polymorphic DNA markers. Los Alamos Sci. 20: 100-102. Huang X, Madan A, et al (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 Johansson E, Prade T, Angelidaki I, Svensson SE, et al (2015). Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. http://dx.doi.org/10.3390/ijms16048997 Ju MM, Ma HC, Xin PY, Zhou ZL, et al (2015). Development and characterization of EST-SSR markers in Bombax ceiba (Malvaceae). Appl. Plant Sci. 3: 1500001. http://dx.doi.org/10.3732/apps.1500001 Jung WY, Lee SS, Kim CW, Kim H-S, et al (2014). RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PLoS One 9: e111982. http://dx.doi.org/10.1371/journal.pone.0111982 Kays SJ and Nottingham SF (2008). Genetic resources, breeding and cultivars. In: Biology and Biochemistry of Jerusalem Artichoke (Taylor and Francis eds.). CRC Press, 149-240. Kiru S, Nasenko I, et al (2010). Use of genetic resources from Jerusalem artichoke collection of N. Vavilov Institute in breeding for bioenergy and health. Agron. Res. 8: 625-632. Kou YX, Zeng J, Liu JQ, Kou YX, et al (2014). Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. J. Agric. Sci. 152: 779-789. http://dx.doi.org/10.1017/S0021859613000476 Kumari M, Grover A, Yadav PV, Arif M, et al (2013). Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genomics 35: 661-670. http://dx.doi.org/10.1007/s13258-013-0118-0 Malfa SL, Currò S, Douglas AB, Brugaletta M, et al (2014). Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochem. Syst. Ecol. 55: 205-211. http://dx.doi.org/10.1016/j.bse.2014.03.022 Merritt BJ, Culley TM, Avanesyan A, Stokes R, et al (2015). An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 3: 1500025. http://dx.doi.org/10.3732/apps.1500025 Mondini L, Noorani A, Pagnotta MA, et al (2009). Assessing plant genetic diversity by molecular tools. Diversity (Basel) 1: 19-35. http://dx.doi.org/10.3390/d1010019 Moose SP, Mumm RH, et al (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147: 969-977. http://dx.doi.org/10.1104/pp.108.118232 Mujaju C, Sehic J, Nybom H, et al (2013). Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am. J. Plant Sci. 4: 1448-1456. http://dx.doi.org/10.4236/ajps.2013.47177 Mullis K, Faloona F, Scharf S, Saiki R, et al (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51: 263-273. http://dx.doi.org/10.1101/SQB.1986.051.01.032 Park YJ, Lee JK, Kim NS, et al (2009). Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14: 4546-4569. http://dx.doi.org/10.3390/molecules14114546 Peakall R, Smouse P, et al (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Peakall R, Smouse PE, et al (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460 Poczai P, Varga I, Laos M, Cseh A, et al (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods 9: 6. http://dx.doi.org/10.1186/1746-4811-9-6 Ramu P, Billot C, Rami JF, Senthilvel S, et al (2013). Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 126: 2051-2064. http://dx.doi.org/10.1007/s00122-013-2117-6 Şelale H, Çelik I, Gültekin V, Allmer J, et al (2013). Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 132: 344-351. http://dx.doi.org/10.1111/pbr.12059 Sokal RR, Michener CD, et al (1958). A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38: 1409-1438. Temnykh S, DeClerck G, Lukashova A, Lipovich L, et al (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. http://dx.doi.org/10.1101/gr.184001 Wangsomnuk PP, Khampa S, Jogloy S, Srivong T, et al (2011a). Assessing genetic structure and relatedness of Jerusalem Artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP Markers. AJPS 2: 753-764. http://dx.doi.org/10.4236/ajps.2011.26090 Wangsomnuk PP, Khampa S, Wangsomnuk P, Jogloy S, et al (2011b). Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genet. Mol. Res. 10: 4012-4025. http://dx.doi.org/10.4238/2011.December.12.4 Wangsomnuk PP, Khampa S, Jogloy S, et al (2015). Exogenous supplementation of growth regulators and temperature improves germination of dormant Jerusalem Artichoke (Helianthus tuberosus L.) seeds under in vitro and in vivo conditions. JABS 9: 23-30. Zhang M, Mao W, Zhang G, Wu F, et al (2014). Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS One 9: e94881. http://dx.doi.org/10.1371/journal.pone.0094881 Zhou Q, Chen TL, Wang YR, Liu ZP, et al (2014). The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochem. Syst. Ecol. 57: 227-230. http://dx.doi.org/10.1016/j.bse.2014.08.023
T. Mornkham, Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., and Kurzweil, H., Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGEMENTS The Higher Education Research Promotion, the National Research University Project of Thailand, the Office of the Higher Education Commission through the Food and Functional Food Research Cluster of Khon Kaen University (F-2553-Ph.d-02 and FC1.1.5 PhD), and research funding from Khon Kaen University to the corresponding author are acknowledged for financially support. We thank Assistant Professor Dr. Tawan Remsungnen for his assistance on the preliminary analysis of SSRs, and the journal reviewers for their valuable comments on this manuscript. REFERENCES Adawy SS, Mokhtar MM, Alsamman MA and Sakr MM (2015). Development of EST-SSR annotated database in olive (Oleaeuropaea). IJSR09. Alla NA, Domokos-Szabolcsy É, El-Ramady H, Hodossi S, et al (2014). Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation. Int. J. Hortic. Sci. 20: 131-136. Andersen JR, Lübberstedt T, et al (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 Bassam BJ, Caetano-Anollés G, Gresshoff PM, et al (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Bock DG, Kane NC, Ebert DP, Rieseberg LH, et al (2014). Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201: 1021-1030. http://dx.doi.org/10.1111/nph.12560 Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Chen H, Liu L, Wang L, Wang S, et al (2015). Development and validation of EST-SSR markers from the transcriptome of Adzuki bean (Vigna angularis). PLoS One 10: e0131939. http://dx.doi.org/10.1371/journal.pone.0131939 Debnath SC, et al (2014). Structured diversity using EST-PCR and EST-SSR markers in a set of wild blueberry clones and cultivars. Biochem. Syst. Ecol. 54: 337-347. http://dx.doi.org/10.1016/j.bse.2014.03.018 Excoffier L, Smouse PE, Quattro JM, et al (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Gadaleta A, Giancaspro A, Zacheo S, Nigro D, et al (2011). Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet. Resour. 9: 243-246. http://dx.doi.org/10.1017/S147926211100030X Garcia RAV, Rangel PN, Brondani C, Martins WS, et al (2011). The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet. 12: 41-54. http://dx.doi.org/10.1186/1471-2156-12-41 Gupta SK, Gopalakrishna T, et al (2010). Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53: 508-523. http://dx.doi.org/10.1139/G10-028 Hartl DL and Clark AG (1997). Principle of Population Genetics. 1997. Sinauer Associates, Inc. Hildebrand CE, Torney DC, Wagner RP, et al (1992). Informativeness of polymorphic DNA markers. Los Alamos Sci. 20: 100-102. Huang X, Madan A, et al (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 Johansson E, Prade T, Angelidaki I, Svensson SE, et al (2015). Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. http://dx.doi.org/10.3390/ijms16048997 Ju MM, Ma HC, Xin PY, Zhou ZL, et al (2015). Development and characterization of EST-SSR markers in Bombax ceiba (Malvaceae). Appl. Plant Sci. 3: 1500001. http://dx.doi.org/10.3732/apps.1500001 Jung WY, Lee SS, Kim CW, Kim H-S, et al (2014). RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PLoS One 9: e111982. http://dx.doi.org/10.1371/journal.pone.0111982 Kays SJ and Nottingham SF (2008). Genetic resources, breeding and cultivars. In: Biology and Biochemistry of Jerusalem Artichoke (Taylor and Francis eds.). CRC Press, 149-240. Kiru S, Nasenko I, et al (2010). Use of genetic resources from Jerusalem artichoke collection of N. Vavilov Institute in breeding for bioenergy and health. Agron. Res. 8: 625-632. Kou YX, Zeng J, Liu JQ, Kou YX, et al (2014). Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. J. Agric. Sci. 152: 779-789. http://dx.doi.org/10.1017/S0021859613000476 Kumari M, Grover A, Yadav PV, Arif M, et al (2013). Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genomics 35: 661-670. http://dx.doi.org/10.1007/s13258-013-0118-0 Malfa SL, Currò S, Douglas AB, Brugaletta M, et al (2014). Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochem. Syst. Ecol. 55: 205-211. http://dx.doi.org/10.1016/j.bse.2014.03.022 Merritt BJ, Culley TM, Avanesyan A, Stokes R, et al (2015). An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 3: 1500025. http://dx.doi.org/10.3732/apps.1500025 Mondini L, Noorani A, Pagnotta MA, et al (2009). Assessing plant genetic diversity by molecular tools. Diversity (Basel) 1: 19-35. http://dx.doi.org/10.3390/d1010019 Moose SP, Mumm RH, et al (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147: 969-977. http://dx.doi.org/10.1104/pp.108.118232 Mujaju C, Sehic J, Nybom H, et al (2013). Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am. J. Plant Sci. 4: 1448-1456. http://dx.doi.org/10.4236/ajps.2013.47177 Mullis K, Faloona F, Scharf S, Saiki R, et al (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51: 263-273. http://dx.doi.org/10.1101/SQB.1986.051.01.032 Park YJ, Lee JK, Kim NS, et al (2009). Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14: 4546-4569. http://dx.doi.org/10.3390/molecules14114546 Peakall R, Smouse P, et al (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Peakall R, Smouse PE, et al (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460 Poczai P, Varga I, Laos M, Cseh A, et al (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods 9: 6. http://dx.doi.org/10.1186/1746-4811-9-6 Ramu P, Billot C, Rami JF, Senthilvel S, et al (2013). Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 126: 2051-2064. http://dx.doi.org/10.1007/s00122-013-2117-6 Şelale H, Çelik I, Gültekin V, Allmer J, et al (2013). Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 132: 344-351. http://dx.doi.org/10.1111/pbr.12059 Sokal RR, Michener CD, et al (1958). A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38: 1409-1438. Temnykh S, DeClerck G, Lukashova A, Lipovich L, et al (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. http://dx.doi.org/10.1101/gr.184001 Wangsomnuk PP, Khampa S, Jogloy S, Srivong T, et al (2011a). Assessing genetic structure and relatedness of Jerusalem Artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP Markers. AJPS 2: 753-764. http://dx.doi.org/10.4236/ajps.2011.26090 Wangsomnuk PP, Khampa S, Wangsomnuk P, Jogloy S, et al (2011b). Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genet. Mol. Res. 10: 4012-4025. http://dx.doi.org/10.4238/2011.December.12.4 Wangsomnuk PP, Khampa S, Jogloy S, et al (2015). Exogenous supplementation of growth regulators and temperature improves germination of dormant Jerusalem Artichoke (Helianthus tuberosus L.) seeds under in vitro and in vivo conditions. JABS 9: 23-30. Zhang M, Mao W, Zhang G, Wu F, et al (2014). Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS One 9: e94881. http://dx.doi.org/10.1371/journal.pone.0094881 Zhou Q, Chen TL, Wang YR, Liu ZP, et al (2014). The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochem. Syst. Ecol. 57: 227-230. http://dx.doi.org/10.1016/j.bse.2014.08.023
T. Mornkham, Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., Kurzweil, H., Mornkham, T., Wangsomnuk, P. P., Mo, X. C., Francisco, F. O., Gao, L. Z., and Kurzweil, H., Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (Helianthus tuberosus L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGEMENTS The Higher Education Research Promotion, the National Research University Project of Thailand, the Office of the Higher Education Commission through the Food and Functional Food Research Cluster of Khon Kaen University (F-2553-Ph.d-02 and FC1.1.5 PhD), and research funding from Khon Kaen University to the corresponding author are acknowledged for financially support. We thank Assistant Professor Dr. Tawan Remsungnen for his assistance on the preliminary analysis of SSRs, and the journal reviewers for their valuable comments on this manuscript. REFERENCES Adawy SS, Mokhtar MM, Alsamman MA and Sakr MM (2015). Development of EST-SSR annotated database in olive (Oleaeuropaea). IJSR09. Alla NA, Domokos-Szabolcsy É, El-Ramady H, Hodossi S, et al (2014). Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation. Int. J. Hortic. Sci. 20: 131-136. Andersen JR, Lübberstedt T, et al (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560. http://dx.doi.org/10.1016/j.tplants.2003.09.010 Bassam BJ, Caetano-Anollés G, Gresshoff PM, et al (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Bock DG, Kane NC, Ebert DP, Rieseberg LH, et al (2014). Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol. 201: 1021-1030. http://dx.doi.org/10.1111/nph.12560 Botstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Chen H, Liu L, Wang L, Wang S, et al (2015). Development and validation of EST-SSR markers from the transcriptome of Adzuki bean (Vigna angularis). PLoS One 10: e0131939. http://dx.doi.org/10.1371/journal.pone.0131939 Debnath SC, et al (2014). Structured diversity using EST-PCR and EST-SSR markers in a set of wild blueberry clones and cultivars. Biochem. Syst. Ecol. 54: 337-347. http://dx.doi.org/10.1016/j.bse.2014.03.018 Excoffier L, Smouse PE, Quattro JM, et al (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Gadaleta A, Giancaspro A, Zacheo S, Nigro D, et al (2011). Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet. Resour. 9: 243-246. http://dx.doi.org/10.1017/S147926211100030X Garcia RAV, Rangel PN, Brondani C, Martins WS, et al (2011). The characterization of a new set of EST-derived simple sequence repeat (SSR) markers as a resource for the genetic analysis of Phaseolus vulgaris. BMC Genet. 12: 41-54. http://dx.doi.org/10.1186/1471-2156-12-41 Gupta SK, Gopalakrishna T, et al (2010). Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53: 508-523. http://dx.doi.org/10.1139/G10-028 Hartl DL and Clark AG (1997). Principle of Population Genetics. 1997. Sinauer Associates, Inc. Hildebrand CE, Torney DC, Wagner RP, et al (1992). Informativeness of polymorphic DNA markers. Los Alamos Sci. 20: 100-102. Huang X, Madan A, et al (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 Johansson E, Prade T, Angelidaki I, Svensson SE, et al (2015). Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. http://dx.doi.org/10.3390/ijms16048997 Ju MM, Ma HC, Xin PY, Zhou ZL, et al (2015). Development and characterization of EST-SSR markers in Bombax ceiba (Malvaceae). Appl. Plant Sci. 3: 1500001. http://dx.doi.org/10.3732/apps.1500001 Jung WY, Lee SS, Kim CW, Kim H-S, et al (2014). RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne). PLoS One 9: e111982. http://dx.doi.org/10.1371/journal.pone.0111982 Kays SJ and Nottingham SF (2008). Genetic resources, breeding and cultivars. In: Biology and Biochemistry of Jerusalem Artichoke (Taylor and Francis eds.). CRC Press, 149-240. Kiru S, Nasenko I, et al (2010). Use of genetic resources from Jerusalem artichoke collection of N. Vavilov Institute in breeding for bioenergy and health. Agron. Res. 8: 625-632. Kou YX, Zeng J, Liu JQ, Kou YX, et al (2014). Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. J. Agric. Sci. 152: 779-789. http://dx.doi.org/10.1017/S0021859613000476 Kumari M, Grover A, Yadav PV, Arif M, et al (2013). Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genomics 35: 661-670. http://dx.doi.org/10.1007/s13258-013-0118-0 Malfa SL, Currò S, Douglas AB, Brugaletta M, et al (2014). Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochem. Syst. Ecol. 55: 205-211. http://dx.doi.org/10.1016/j.bse.2014.03.022 Merritt BJ, Culley TM, Avanesyan A, Stokes R, et al (2015). An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 3: 1500025. http://dx.doi.org/10.3732/apps.1500025 Mondini L, Noorani A, Pagnotta MA, et al (2009). Assessing plant genetic diversity by molecular tools. Diversity (Basel) 1: 19-35. http://dx.doi.org/10.3390/d1010019 Moose SP, Mumm RH, et al (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147: 969-977. http://dx.doi.org/10.1104/pp.108.118232 Mujaju C, Sehic J, Nybom H, et al (2013). Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am. J. Plant Sci. 4: 1448-1456. http://dx.doi.org/10.4236/ajps.2013.47177 Mullis K, Faloona F, Scharf S, Saiki R, et al (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51: 263-273. http://dx.doi.org/10.1101/SQB.1986.051.01.032 Park YJ, Lee JK, Kim NS, et al (2009). Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14: 4546-4569. http://dx.doi.org/10.3390/molecules14114546 Peakall R, Smouse P, et al (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Peakall R, Smouse PE, et al (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28: 2537-2539. http://dx.doi.org/10.1093/bioinformatics/bts460 Poczai P, Varga I, Laos M, Cseh A, et al (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods 9: 6. http://dx.doi.org/10.1186/1746-4811-9-6 Ramu P, Billot C, Rami JF, Senthilvel S, et al (2013). Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 126: 2051-2064. http://dx.doi.org/10.1007/s00122-013-2117-6 Şelale H, Çelik I, Gültekin V, Allmer J, et al (2013). Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 132: 344-351. http://dx.doi.org/10.1111/pbr.12059 Sokal RR, Michener CD, et al (1958). A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38: 1409-1438. Temnykh S, DeClerck G, Lukashova A, Lipovich L, et al (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452. http://dx.doi.org/10.1101/gr.184001 Wangsomnuk PP, Khampa S, Jogloy S, Srivong T, et al (2011a). Assessing genetic structure and relatedness of Jerusalem Artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP Markers. AJPS 2: 753-764. http://dx.doi.org/10.4236/ajps.2011.26090 Wangsomnuk PP, Khampa S, Wangsomnuk P, Jogloy S, et al (2011b). Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genet. Mol. Res. 10: 4012-4025. http://dx.doi.org/10.4238/2011.December.12.4 Wangsomnuk PP, Khampa S, Jogloy S, et al (2015). Exogenous supplementation of growth regulators and temperature improves germination of dormant Jerusalem Artichoke (Helianthus tuberosus L.) seeds under in vitro and in vivo conditions. JABS 9: 23-30. Zhang M, Mao W, Zhang G, Wu F, et al (2014). Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS One 9: e94881. http://dx.doi.org/10.1371/journal.pone.0094881 Zhou Q, Chen TL, Wang YR, Liu ZP, et al (2014). The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochem. Syst. Ecol. 57: 227-230. http://dx.doi.org/10.1016/j.bse.2014.08.023
2012
T. Mornkham, Wangsomnuk, P. P., Wangsomnuk, P., Jogloy, S., Pattanothai, A., and Fu, Y. B., Comparison of five DNA extraction methods for molecular analysis of Jerusalem artichoke (Helianthus tuberosus), vol. 11, pp. 572-581, 2012.
Analytical Software (2003). Statistix 8, Analytical Software. Tallahasee, USA. Cosgrove DR, Oelke JD, Doll DW and Davis DJ (2000). Jerusalem Artichoke (Online). Available at [http://www.hort.purdue.edu/newcrop/afcm/jerusart.html]. Accessed August 22, 2011. Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 11-15. Drábkova L, Kirschner J and Vlcek C (2002). Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Mol. Biol. Rep. 20: 161-175. http://dx.doi.org/10.1007/BF02799431 Fang G, Hammar S and Grumet R (1992). A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13: 52-4, 56. PMid:1503775 Hugo RP, Romagnoli MV and Vallejos RH (1998). A simple method for isolating high yield and quality DNA from cotton (Gossypium hirsutum L.) leaves. Plant Mol. Biol. Rep. 16: 1-6. http://dx.doi.org/10.1023/A:1017158311412 Katterman FR and Shattuck VI (1983). An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins. Prep. Biochem. 13: 347-359. http://dx.doi.org/10.1080/00327488308068177 PMid:6647418 Khan IA, Awan FS, Ahmad A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Biol. Rep. 22: 89a-89e. http://dx.doi.org/10.1007/BF02773355 Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570 Li JT, Yang J, Chen DC and Zhang XL (2007). An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genet. Mol. Res. 6: 1064-1071. PMid:18273799 Lui HJ, Xu H, Yu X and Jiang TB (2011). Application of SRAP and SSR molecular markers in genetic diversity of DaXing’ anling area wild Auricularia auricular. Adv. Mat. Res. 183-184: 1118-1122. Mutlu N, Boyaci FH, Gocmen M and Abak K (2008). Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theor. Appl. Genet. 117: 1303-1312. http://dx.doi.org/10.1007/s00122-008-0864-6 PMid:18712340 Nelson DL, Lehninger AL and Cox MM (2008). Lehninger Principles of Biochemistry. W.H. Freeman, New York. Porebski S, Grant B and Boum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. http://dx.doi.org/10.1007/BF02772108 Seiler GJ and Brothers ME (1999). Oil concentration and fatty acid composition of Achenes of Helianthus species (Asteraceae) from Canada. Econ. Bot. 53: 273-280. http://dx.doi.org/10.1007/BF02866637 Štorchová H, Hrdličková R, Chrtek J and Tetera M (2000). An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49: 79-84. http://dx.doi.org/10.2307/1223934 Tai TH and Tanksley SD (1990). A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol. Biol. Rep. 8: 297-303. http://dx.doi.org/10.1007/BF02668766
2011
P. P. Wangsomnuk, Khampa, S., Wangsomnuk, P., Jogloy, S., Mornkham, T., Ruttawat, B., Patanothai, A., and Fu, Y. B., Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers, vol. 10, pp. 4012-4025, 2011.
Arif IA, Bakir MA, Khan HA, Al Farhan AH, et al. (2010). A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 11: 2079-2096. http://dx.doi.org/10.3390/ijms11052079 PMid:20559503 PMCid:2885095   Breton C, Serieys H and Bervill A (2010). Gene transfer from wild Helianthus to sunflower: topicalities and limits. OCL 17: 104-114.   Corander J, Waldmann P, Marttinen P and Sillanpää MJ (2004). BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20: 2363-2369. http://dx.doi.org/10.1093/bioinformatics/bth250 PMid:15073024   Dozet B, Marinkovic R, Vasic D and Marjanovic A (1993). Genetic similarity of the Jerusalem artichoke populations (Helianthus tuberosus L.) collected in Montenegro. Helia 16: 41-48.   Dozet B, Marinkovic R, Atlagic J and Vasic D (1994). Genetic Divergence in Jerusalem Artichoke (Helianthus tuberosus L.). In: Proc. Genet. Resour. Sect. Meeting EUCARPIA, Clermont-Ferrand, 47-48.   El Gengaihi SA, Aboul Enein AM, Abou Elalla FM and Abou Baker DH (2009). Molecular characterizations and antimicrobial activities of chicory and Jerusalem artichoke plants. Int. J. Acad. Res. 1: 66-71.   Ercisli S, Gadze J, Agar G, Yildirim N, et al. (2011). Genetic relationships among wild pomegranate (Punica granatum) genotypes from Coruh Valley in Turkey. Genet. Mol. Res. 10: 459-464. http://dx.doi.org/10.4238/vol10-1gmr1155 PMid:21425096   Evanno G, Regnaut S and Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x PMid:15969739   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Excoffier L and Lischer HEL (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x PMid:21565059   Falush D, Stephens M and Pritchard JK (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567-1587. PMid:12930761 PMCid:1462648   Falush D, Stephens M and Pritchard JK (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7: 574-578. http://dx.doi.org/10.1111/j.1471-8286.2007.01758.x PMid:18784791 PMCid:1974779   Fu YB (2006). Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet. Resour. 4: 117-124. http://dx.doi.org/10.1079/PGR2005106   Fu YB, Peterson GW, Richards KW, Tarn TR, et al. (2009). Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers. Am. J. Potato Res. 86: 38-48. http://dx.doi.org/10.1007/s12230-008-9059-6   Hamrick JL and Godt MJW (1998). Allozyme Diversity in Plant Species. In: Plant Population Genetics, Breeding and Genetic Resources (eds.). Sinauer, 43-63.   Iqbal A, Sadia B, Khan AI, Awan FS, et al. (2010). Biodiversity in the sorghum (Sorghum bicolor L. Moench) germplasm of Pakistan. Genet. Mol. Res. 9: 756-764. http://dx.doi.org/10.4238/vol9-2gmr741 PMid:20449808   Karp A (2002). The New Genetic Era: Will it Help us in Managing Genetic Diversity? In: Managing Plant Genetic Diversity (Engels JMM, Rao VR, Brown AHD and Jackson MT, eds.). International Plant Genetic Resources Institute, Rome, 43-56.   Kays SJ and Kultur F (2005). Genetic variation in Jerusalem artichoke (Helianthus tuberosus L.) flowering date and duration. HortScience 40: 1675-1678.   Kays SJ and Nottingham SF (2008). Genetic Resources, Breeding and Cultivars. In: Biology and Biochemistry of Jerusalem Artichoke (Taylor and Francis eds.). CRC Press, 149-240.   Koopman WJM (2005). Phylogenetic signal in AFLP data sets. Syst. Biol. 54: 197-217. http://dx.doi.org/10.1080/10635150590924181 PMid:16012092   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895   Lawson WR, Henry RJ, Kochman JK and Kong G (1994). Genetic diversity in sunflower (Helianthus annuus L.) as revealed by random amplified polymorphic DNA analysis. Aust. J. Agric. Res. 45: 1319-1327. http://dx.doi.org/10.1071/AR9941319   Mandel JR, Dechaine JM, Marek LF and Burke JM (2011). Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor. Appl. Genet. 123: 693-704. http://dx.doi.org/10.1007/s00122-011-1619-3 PMid:21638000   Mornkham T, Wangsomnuk PP, Jogloy S, Wangsomnuk P, et al. (2011). An assessment of five DNA extraction methods for molecular analyses of Jerusalem artichoke (Helianthus tuberosus L.). Genet. Mol. Res. (Submitted on August 23, 2011).   Pritchard J, Stephens M and Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945-959. PMid:10835412 PMCid:1461096   Puttha R, Jogloy S, Wangsomnuk PP, Srijaranai S, et al. (2011). Genotypic variability and genotype by environment interactions for inulin content of Jerusalem artichoke germplasm. Euphytica DOI 10.1007/s10681-011-0520-0. (Accepted on August 18, 2011).   Quagliaro G, Vischi M, Tyrka M and Olivieri AM (2001). Identification of wild and cultivated sunflower for breeding purposes by AFLP markers. J. Hered. 92: 38-42. http://dx.doi.org/10.1093/jhered/92.1.38 PMid:11336227   Reyes-Valdes MH and Williams CG (2005). An entropy-based measure of founder informativeness. Genet. Res. 85: 81- 88. http://dx.doi.org/10.1017/S0016672305007354 PMid:16089038   Rohlf FJ (1997). NTSYS-pc 2.1. Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York. PMid:9428832   Russell JR, Hosein F, Johnson E, Waugh R, et al. (1993). Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis. Mol. Ecol. 2: 89-97. http://dx.doi.org/10.1111/j.1365-294X.1993.tb00003.x PMid:8180737   SAS Institute Inc. (2008). The SAS System for Windows V9.2. SAS Institute Incorporated, Cary.   Schittenhelm S (1989). Inheritance of Agronomical Important Traits in Jerusalem Artichoke (Helianthus tuberosus L.). In: Science for Plant Breeding: Book of Poster Abstracts Part 2, Poster Groups 16-33; XII. EUCARPIA Congress February 27, March 4, 1989, Göttingen.   Seiler GJ (2007). The potential of wild sunflower species for industrial uses. Helia 30: 175-198. http://dx.doi.org/10.2298/HEL0746175S   Sennoi R, Jogloy S, Saksirirat W and Patanothai A (2010). Pathogeneicity test of Sclerotium rolfsii, a causal agent of Jerusalem artichoke (Helianthus tuberosus L.) stem rot. Asian J. Plant Sci. 9: 281-284. http://dx.doi.org/10.3923/ajps.2010.281.284   Serieys H, Souyris I, Gil A and Poinso B (2010). Diversity of Jerusalem artichoke clones (Helianthus tuberosus L.) from the INRA-Montpellier collection. Genet. Resour. Crop Evol. 57: 1207-1215. http://dx.doi.org/10.1007/s10722-010-9560-x   Singh R, Mishra SN, Diwiedi SK and Ahmad Z (2006). Genetic variation in Sea buckthorn (Hippophae rhamnoides L.) populations of cold arid Ladakh (India) using RAPD markers. Curr. Sci. 91: 1321-1322.   Sokal RR and Michener CD (1958). A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409-1438.   Swanton CJ, Cavers PB, Clements DR and Moore MJ (1992). The biology of Canadian weeds. 101. Helianthus tuberosus L. Can. J. Plant Sci. 72: 1367-1382. http://dx.doi.org/10.4141/cjps92-169   Swofford DL (1998). PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland. PMid:12064242   Tai TH and Tanksley SD (1990). A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol. Biol. Rep. 8: 297-303. http://dx.doi.org/10.1007/BF02668766   van Soest LJM, Mastebroek HD and de Meijer EPM (1993). Genetic resources and breeding: a necessity for the success of industrial crops. Indust. Crops Prod. 1: 283-288. http://dx.doi.org/10.1016/0926-6690(92)90029-U   Volk GM and Richards K (2006). Preservation methods for Jerusalem artichoke cultivars. HortScience 41: 80-83.   Wangsomnuk PP, Khampa S, Jogloy S and Wangsomnuk P (2006). Assessment of genome and genetic diversity in Jerusalem artichoke (Helianthus tuberosus L.) with ISSR markers. Khon Kaen Agr. J. 34: 124-138.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606   Zaky EA (2009). Physiological response to diets fortified with Jerusalem artichoke tubers (Helianthus tuberosus L.) powder by diabetic rats. American-Eurasian J. Agric. Environ. Sci. 5: 682-688.