Publications

Found 17 results
Filters: Author is X. Zhou  [Clear All Filters]
2016
X. Zhou, Ca, J. G., Peng, H., Wang, J. L., Li, G. M., Zhou, X., Ca, J. G., Peng, H., Wang, J. L., and Li, G. M., Association of IL-1α gene polymorphism with susceptibility to type 1 diabetes in Chinese children, vol. 15, p. -, 2016.
X. Zhou, Ca, J. G., Peng, H., Wang, J. L., Li, G. M., Zhou, X., Ca, J. G., Peng, H., Wang, J. L., and Li, G. M., Association of IL-1α gene polymorphism with susceptibility to type 1 diabetes in Chinese children, vol. 15, p. -, 2016.
S. Y. Su, Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., Liu, J. L., Su, S. Y., Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., Liu, J. L., Su, S. Y., Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., and Liu, J. L., NF1 frameshift mutation (c.6520_6523delGAGA) association with nervous system tumors and bone abnormalities in a Chinese patient with neurofibromatosis type 1, vol. 15, p. -, 2016.
S. Y. Su, Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., Liu, J. L., Su, S. Y., Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., Liu, J. L., Su, S. Y., Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., and Liu, J. L., NF1 frameshift mutation (c.6520_6523delGAGA) association with nervous system tumors and bone abnormalities in a Chinese patient with neurofibromatosis type 1, vol. 15, p. -, 2016.
S. Y. Su, Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., Liu, J. L., Su, S. Y., Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., Liu, J. L., Su, S. Y., Zhou, X., Pang, X. M., Chen, C. Y., Li, S. H., and Liu, J. L., NF1 frameshift mutation (c.6520_6523delGAGA) association with nervous system tumors and bone abnormalities in a Chinese patient with neurofibromatosis type 1, vol. 15, p. -, 2016.
2011
R. Q. Ji, Song, Q., Xin, X. F., Zhou, X., and Feng, H., Isolation of fertility-related genes of multiple-allele-inherited male sterility in Brassica rapa ssp pekinensis by cDNA-AFLP, vol. 10, pp. 4073-4083, 2011.
Cao JS, Yu XL, Ye WZ, Lu G, et al. (2006). Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp chinensis Makino). Plant Cell Rep. 24: 715-723. http://dx.doi.org/10.1007/s00299-005-0020-6 PMid:16075226   Dong JG, Dong ZS, Liu XX and Liu CS (2004). Cytological studies on anther development of ecological male sterile line 533S in Brassica napus L. J. Northwest Sci. Tech. Univ. Agr. For. 32: 61-66.   Feng H, Wei YT and Zhang SN (1995). Inheritance of and utilization model for genic male sterility in Chinese cabbage (Brassica pekinensis Rupr.). Acta Hortic. 402: 133-140.   Feng H, Wei YT and Ji SJ (1996). Multiple allele model for genic male sterility in Chinese cabbage. Acta Hortic. 467: 133-142.   Feng H, Xu W and Wang YG (2007). Directive transfer of the genetic male sterile line of milk Chinese cabbage AI023. Acta Hortic. Sin. 34: 659-664.   Feng H, Wei P, Piao ZY, Liu ZY, et al. (2009). SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brassica rapa L.). Theor. Appl. Genet. 119: 333-339. http://dx.doi.org/10.1007/s00122-009-1042-1 PMid:19436990   Guo JX, Sun RF, Song JX and Zhang SJ (2001). Microsporogenesis of several male sterile lines in Brassica rapa L. ssp. pekinensis. Acta Hortic. Sin. 28: 409-414.   He CZ, Liu ZM, Xion XY and Zou X (2008). Cytologic observations tions on anther development of 9704A, a cytoplasmic male sterile line in Capsicum annum L. Acta Hortic. Sin. 35: 521-528.   Kim SW, Harney JW and Larsen PR (1998). Studies of the hormonal regulation of type 2 5'-iodothyronine deiodinase messenger ribonucleic acid in pituitary tumor cells using semiquantitative reverse transcription-polymerase chain reaction. Endocrinology 139: 4895-4905. http://dx.doi.org/10.1210/en.139.12.4895 PMid:9832426   Liu LC, Cao JS, Yu XL and Xiang X (2006). Expression of an antisense BcMF3 affects microsporogenesis and pollen tube growth in Arabidopsis. Agr. Sci. China 5: 339-345. http://dx.doi.org/10.1016/S1671-2927(06)60059-X   Mi HL, Zhang XY, Fan YF and Li YK (2008). A study on activated oxygen metabolism in the male sterile plants of Lycium barbarum. Acta Agr. Univ. Jiangxiensis 30: 796-798.   Schroder M and Kaufman RJ (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74: 739-789. http://dx.doi.org/10.1146/annurev.biochem.73.011303.074134 PMid:15952902   Shi J (2007). Mapping of a Rice (Oryza sativa L.) Fatty Acyl Reductase OsMS2 Gene and its Function in Pollen wall Development. Master's thesis, Shanghai Jiaotong University, Shanghai.   Song LQ, Fu TD, Tu JX and Ma CZ (2006). Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor. Appl. Genet. 113: 55-62. http://dx.doi.org/10.1007/s00122-006-0271-9 PMid:16783591   Subhash KR, Gaurab G, Kaushik G and Sanjukta D (2008). A cDNA-AFLP approach to look for differentially expressed gene fragments in dioecious pointed gourd (Trichosanthes dioica Roxb.). Res. Commun. 94: 381-385.   Tu HM, Kim SW, Salvatore D, Bartha T, et al. (1997). Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138: 3359- 3368. http://dx.doi.org/10.1210/en.138.8.3359 PMid:9231788   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Wang LL, Wei P, Liu ZY and Li CY (2010). SSR mapping of the Msf, a multiple-allele male-fertility restorer gene in Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Acta Hortic. Sin. 37: 923-930.   Wang YG, Feng H, Lin GR and Xu SF (2005). The transfer of genetic male sterile lines in Brassica campestris L. ssp. chinesis (L.) Makino. Acta Hortic. Sin. 32: 628-631.   Wei P, Feng H, Piao ZY and Li CY (2009). Identification of SSR markers linked to a genic multiple-allele male sterile gene in Chinese cabbage. Acta Hortic. Sin. 36: 103-108.   Wu JY, Shen JR, Mao XZ and Liu KD (2007). Isolation and analysis of differentially expressed genes in dominant genic male sterility (DGMS) Brassica napus L. using subtractive PCR and cDNA microarray. Plant Sci. 172: 204-211. http://dx.doi.org/10.1016/j.plantsci.2006.08.010   Xia T and Liu JL (1994). Cytochrome oxidase activity and ATP content of male-sterile cytoplasm in maize (Zea mays L.). Acta Agr. Boreali-Sin. 9: 33-37.   Ye YM, Hu QS, Chen TH and Bao MZ (2008). Male sterile lines of Zinnia elegans and their cytological observations. Agr. Sci. China 7: 423-431. http://dx.doi.org/10.1016/S1671-2927(08)60085-1   Zhang Q, Cao J, Huang L, Xiang X, et al. (2008). BcMF5, a pollen coat protein gene (PCP), from Brassica rapa. ssp. chinensis, involved in the transcription of different lengths of 3'-UTRs of PCPs. Mol. Biol. Rep. 35: 439-445. http://dx.doi.org/10.1007/s11033-007-9104-4 PMid:17676432
Y. Gu, Zhou, X., and Zhang, S. L., Meta-analysis of an association of codon 72 polymorphisms of the p53 gene with increased endometrial cancer risk, vol. 10, pp. 3609-3619, 2011.
Agorastos T, Masouridou S, Lambropoulos AF, Chrisafi S, et al. (2004). P53 codon 72 polymorphism and correlation with ovarian and endometrial cancer in Greek women. Eur. J. Cancer Prev. 13: 277-280. http://dx.doi.org/10.1097/01.cej.0000136717.95465.09 PMid:15554555   Ashton KA, Proietto A, Otton G, Symonds I, et al. (2009). Polymorphisms in TP53 and MDM2 combined are associated with high grade endometrial cancer. Gynecol. Oncol. 113: 109-114. http://dx.doi.org/10.1016/j.ygyno.2008.12.036 PMid:19193430   Berchuck A, Kohler MF, Marks JR, Wiseman R, et al. (1994). The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am. J. Obstet. Gynecol. 170: 246-252. PMid:8296829   Esteller M, Garcia A, Martinez-Palones JM, Xercavins J, et al. (1997). Susceptibility to endometrial cancer: influence of allelism at p53, glutathione S-transferase (GSTM1 and GSTT1) and cytochrome P-450 (CYP1A1) loci. Br. J. Cancer 75: 1385-1388. http://dx.doi.org/10.1038/bjc.1997.235 PMid:9155064 PMCid:2228224   Fan R, Wu MT, Miller D, Wain JC, et al. (2000). The p53 codon 72 polymorphism and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 9: 1037-1042. PMid:11045785   Ghasemi N, Karimi-Zarchi M, Mortazavi-Zadeh MR and Atash-Afza A (2010). Evaluation of the frequency of TP53 gene codon 72 polymorphisms in Iranian patients with endometrial cancer. Cancer Genet. Cytogenet. 196: 167-170. http://dx.doi.org/10.1016/j.cancergencyto.2009.09.013 PMid:20082853   Grochola LF, Zeron-Medina J, Meriaux S and Bond GL (2010). Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb. Perspect. Biol. 2: a001032. http://dx.doi.org/10.1101/cshperspect.a001032 PMid:20452958 PMCid:2857176   Harris CC and Hollstein M (1993). Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329: 1318- 1327. http://dx.doi.org/10.1056/NEJM199310283291807 PMid:8413413   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Ioannidis JP, Ntzani EE, Trikalinos TA and Contopoulos-Ioannidis DG (2001). Replication validity of genetic association studies. Nat. Genet. 29: 306-309. http://dx.doi.org/10.1038/ng749 PMid:11600885   Jemal A, Siegel R, Xu J and Ward E (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60: 277-300. http://dx.doi.org/10.3322/caac.20073 PMid:20610543   Koushik A, Platt RW and Franco EL (2004). p53 codon 72 polymorphism and cervical neoplasia: a meta-analysis review. Cancer Epidemiol. Biomarkers Prev. 13: 11-22. http://dx.doi.org/10.1158/1055-9965.EPI-083-3 PMid:14744727   Lax SF (2004). Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch. 444: 213-223. http://dx.doi.org/10.1007/s00428-003-0947-3 PMid:14747944   Munafo M (2004). Replication validity of genetic association studies of smoking behavior: what can meta-analytic techniques offer? Nicotine Tob. Res. 6: 381-382. http://dx.doi.org/10.1080/14622200410001676369 PMid:15203812   Ng TT, McGory ML, Ko CY and Maggard MA (2006). Meta-analysis in surgery: methods and limitations. Arch. Surg. 141: 1125-1130. http://dx.doi.org/10.1001/archsurg.141.11.1125 PMid:17116806   Niwa Y, Hirose K, Matsuo K, Tajima K, et al. (2005). Association of p73 G4C14-to-A4T14 polymorphism at exon 2 and p53 Arg72Pro polymorphism with the risk of endometrial cancer in Japanese subjects. Cancer Lett. 219: 183-190. http://dx.doi.org/10.1016/j.canlet.2004.10.018 PMid:15723718   Nunobiki O, Ueda M, Yamamoto M, Toji E, et al. (2009). Polymorphisms of p53 codon 72 and MDM2 promoter 309 and the risk of endometrial cancer. Hum. Cell 22: 101-106. http://dx.doi.org/10.1111/j.1749-0774.2009.00075.x PMid:19874399   Ozalp S, Yalcin OT, Tanir HM, Kabukcuoglu S, et al. (2003). p53 overexpression as a prognostic indicator in endometrial carcinoma. Eur. J. Gynaecol. Oncol. 24: 275-278. PMid:12807239   Pecorelli S, Favalli G, Zigliani L and Odicino F (2003). Cancer in women. Int. J. Gynaecol. Obstet. 82: 369-379. http://dx.doi.org/10.1016/S0020-7292(03)00225-X   Peller S, Halperin R, Schneider D, Kopilova Y, et al. (1999). Polymorphisms of the p53 gene in women with ovarian or endometrial carcinoma. Oncol. Rep. 6: 193-197. PMid:9864427   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Risinger JI, Dent GA, Ignar-Trowbridge D, McLachlan JA, et al. (1992). p53 gene mutations in human endometrial carcinoma. Mol. Carcinog. 5: 250-253. http://dx.doi.org/10.1002/mc.2940050403 PMid:1497800   Roh JW, Kim JW, Park NH, Song YS, et al. (2004). p53 and p21 genetic polymorphisms and susceptibility to endometrial cancer. Gynecol. Oncol. 93: 499-505. http://dx.doi.org/10.1016/j.ygyno.2004.02.005 PMid:15099969   Sherman ME (2000). Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod. Pathol. 13: 295-308. http://dx.doi.org/10.1038/modpathol.3880051 PMid:10757340   Soliman PT, Oh JC, Schmeler KM, Sun CC, et al. (2005). Risk factors for young premenopausal women with endometrial cancer. Obstet. Gynecol. 105: 575-580. http://dx.doi.org/10.1097/01.AOG.0000154151.14516.f7 PMid:15738027   Ueda M, Terai Y, Kanda K, Kanemura M, et al. (2006). Germline polymorphism of p53 codon 72 in gynecological cancer. Gynecol. Oncol. 100: 173-178. http://dx.doi.org/10.1016/j.ygyno.2005.08.015 PMid:16168468   Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Viechtbauer W (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Stat. Med. 26: 37-52. http://dx.doi.org/10.1002/sim.2514 PMid:16463355   Whibley C, Pharoah PD and Hollstein M (2009). p53 polymorphisms: cancer implications. Nat. Rev. Cancer 9: 95-107. http://dx.doi.org/10.1038/nrc2584 PMid:19165225   Yang HP, Gonzalez BJ, Li Q, Platz EA, et al. (2010). Common genetic variation in the sex hormone metabolic pathway and endometrial cancer risk: pathway-based evaluation of candidate genes. Carcinogenesis 31: 827-833. http://dx.doi.org/10.1093/carcin/bgp328 PMid:20053928 PMCid:2864407   Ye S (2000). Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 19: 623-629. http://dx.doi.org/10.1016/S0945-053X(00)00102-5   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093   Zubor P, Stanclova A, Kajo K, Hatok J, et al. (2009). The p53 codon 72 exon 4 BstUI polymorphism and endometrial cancer in Caucasian women. Oncology 76: 173-183. http://dx.doi.org/10.1159/000201570 PMid:19209008   Zucchetto A, Serraino D, Polesel J, Negri E, et al. (2009). Hormone-related factors and gynecological conditions in relation to endometrial cancer risk. Eur. J. Cancer Prev. 18: 316-321. http://dx.doi.org/10.1097/CEJ.0b013e328329d830 PMid:19554665
2010
Y. X. Liu, Zhou, X., Li, D. Q., Cui, Q. W., and Wang, G. L., Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle, vol. 9. pp. 891-896, 2010.
Armstrong DV (1994). Heat stress interaction with shade and cooling. J. Dairy Sci. 77: 2044-2050. http://dx.doi.org/10.3168/jds.S0022-0302(94)77149-6   Bernabucci U, Ronchi B, Lacetera N and Nardone A (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 85: 2173-2179. http://dx.doi.org/10.3168/jds.S0022-0302(02)74296-3   Dybus A and Grzesiak (2006). GHRH/HaeIII gene polymorphism and its associations with milk production traits in Polish Black-and-White cattle. Arch. Tierz., Dummerstorf 49: 434-438.   El-Nouty FD, Elbanna IM, Davis TP and Johnson HD (1980). Aldosterone and ADH response to heat and dehydration in cattle. J. Appl. Physiol. 48: 249-255. PMid:7364609   Glorioso N, Herrera VL, Bagamasbad P, Filigheddu F, et al. (2007). Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: sex-specific and haplotype-specific effects. Circ. Res. 100: 1522-1529. http://dx.doi.org/10.1161/01.RES.0000267716.96196.60 PMid:17446437   Hawken RJ, Barris WC, McWilliam SM and Dalrymple BP (2004). An interactive bovine in silico SNP database (IBISS). Mamm. Genome 15: 819-827. http://dx.doi.org/10.1007/s00335-004-2382-4 PMid:15520884   Herrera VL, Emanuel JR, Ruiz-Opazo N, Levenson R, et al. (1987). Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications. J. Cell Biol. 105: 1855-1865. http://dx.doi.org/10.1083/jcb.105.4.1855 PMid:2822726   Jannot MF, Raccah D, De La Tour DD, Coste T, et al. (2002). Genetic and environmental regulation of Na/K adenosine triphosphatase activity in diabetic patients. Metabolism 51: 284-291. http://dx.doi.org/10.1053/meta.2002.29009 PMid:11887161   Maruya E, Saji H and Yokoyama S (1996). PCR-LIS-SSCP (Low ionic strength single-stranded conformation polymorphism) - a simple method for high-resolution allele typing of HLA-DRB1, -DQB1, and -DPB1. Genome Res. 6: 51-57. http://dx.doi.org/10.1101/gr.6.1.51 PMid:8681139   Morel P, Tallineau C, Pontcharraud R, Piriou A, et al. (1998). Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem. Int. 33: 531-540. http://dx.doi.org/10.1016/S0197-0186(98)00062-X   Rhoad AO (1944). The Iberia heat tolerance test for cattle. Trop. Agricult. 21: 162-164.   Smith TR, Chapa A, Willard S, Herndon C Jr, et al. (2006). Evaporative tunnel cooling of dairy cows in the southeast. II: impact on lactation performance. J. Dairy Sci. 89: 3915-3923. http://dx.doi.org/10.3168/jds.S0022-0302(06)72434-1   Srikandakumar A and Johnson EH (2004). Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows. Trop. Anim. Health Prod. 36: 685-692. http://dx.doi.org/10.1023/B:TROP.0000042868.76914.a9 PMid:15563029   Sweadner KJ, Wetzel RK and Arystarkhova E (2000). Genomic organization of the human FXYD2 gene encoding the gamma subunit of the Na,K-ATPase. Biochem. Biophys. Res. Commun. 279: 196-201. http://dx.doi.org/10.1006/bbrc.2000.3907 PMid:11112438   Valtorta SE and Gallardo MR (2004). Evaporative cooling for Holstein dairy cows under grazing conditions. Int. J. Biometeorol. 48: 213-217. http://dx.doi.org/10.1007/s00484-003-0196-9 PMid:14639473   Yeh F, Yang R and Boyle T (1999). POPGENE version 1.31. Microsoft Windows-based freeware for population genetic analysis. University of Alberta and Centre for Internacional Forestry Research, Canada. Available at [http://www. ualberta.ca/~fyeh/fyeh].