Publications
Found 4 results
Filters: Author is S. Honsawek [Clear All Filters]
“ADAMTS14 gene polymorphism associated with knee osteoarthritis in Thai women”, vol. 12, pp. 5301-5309, 2013.
, “Association between matrix metalloproteinase-3 polymorphism and anterior cruciate ligament ruptures”, vol. 10, pp. 4158-4165, 2011.
,
Astolfi CM, Shinohara AL, da Silva RA, Santos MC, et al. (2006). Genetic polymorphisms in the MMP-1 and MMP-3 gene may contribute to chronic periodontitis in a Brazilian population. J. Clin. Periodontol. 33: 699-703.
http://dx.doi.org/10.1111/j.1600-051X.2006.00979.x
PMid:16899023
Brooks JH, Fuller CW, Kemp SP and Reddin DB (2005). Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br. J. Sports Med. 39: 757-766.
http://dx.doi.org/10.1136/bjsm.2005.018135
PMid:16183774 PMCid:1725032
Chakraborti S, Mandal M, Das S, Mandal A, et al. (2003). Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem. 253: 269-285.
http://dx.doi.org/10.1023/A:1026028303196
PMid:14619979
Collins M and Raleigh SM (2009). Genetic risk factors for musculoskeletal soft tissue injuries. Med. Sport Sci. 54: 136- 149.
http://dx.doi.org/10.1159/000235701
PMid:19696512
de Loes M, Dahlstedt LJ and Thomee R (2000). A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand. J. Med. Sci. Sports 10: 90-97.
http://dx.doi.org/10.1034/j.1600-0838.2000.010002090.x
PMid:10755279
Deacon A, Bennell K, Kiss ZS, Crossley K, et al. (1997). Osteoarthritis of the knee in retired, elite Australian rules footballers. Med. J. Aust. 166: 187-190.
PMid:9066547
Dunleavey L, Beyzade S and Ye S (2000). Rapid genotype analysis of the stromelysin gene 5A/6A polymorphism. Atherosclerosis 151: 587-589.
http://dx.doi.org/10.1016/S0021-9150(00)00443-3
Duthon VB, Barea C, Abrassart S, Fasel JH, et al. (2006). Anatomy of the anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 14: 204-213.
http://dx.doi.org/10.1007/s00167-005-0679-9
PMid:16235056
Flynn RK, Pedersen CL, Birmingham TB, Kirkley A, et al. (2005). The familial predisposition toward tearing the anterior cruciate ligament: a case control study. Am. J. Sports Med. 33: 23-28.
http://dx.doi.org/10.1177/0363546504265678
PMid:15610995
Higuchi H, Shirakura K, Kimura M, Terauchi M, et al. (2006). Changes in biochemical parameters after anterior cruciate ligament injury. Int. Orthop. 30: 43-47.
http://dx.doi.org/10.1007/s00264-005-0023-5
PMid:16333657 PMCid:2254663
Liu Z, Tang NL, Cao XB, Liu WJ, et al. (2010). Lack of association between the promoter polymorphisms of MMP-3 and IL-6 genes and adolescent idiopathic scoliosis: a case-control study in a Chinese Han population. Spine 35: 1701- 1705.
http://dx.doi.org/10.1097/BRS.0b013e3181c6ba13
PMid:20436380
Lu Z, Cao Y, Wang Y, Zhang Q, et al. (2007). Polymorphisms in the matrix metalloproteinase-1, 3, and 9 promoters and susceptibility to adult astrocytoma in northern China. J. Neurooncol. 85: 65-73.
http://dx.doi.org/10.1007/s11060-007-9392-5
PMid:17502998
Marshall SW, Padua D and McGrath M (2007). Incidence of ACL injuries. Hum. Kinet. 5-30.
Matrisian LM (1990). Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 6: 121-125.
http://dx.doi.org/10.1016/0168-9525(90)90126-Q
Mattey DL, Nixon NB, Dawes PT, Ollier WE, et al. (2004). Association of matrix metalloproteinase 3 promoter genotype with disease outcome in rheumatoid arthritis. Genes Immun. 5: 147-149.
http://dx.doi.org/10.1038/sj.gene.6364050
PMid:14712311
Nagase H, Visse R and Murphy G (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69: 562-573.
http://dx.doi.org/10.1016/j.cardiores.2005.12.002
PMid:16405877
Posthumus M, September AV, Keegan M, O'Cuinneagain D, et al. (2009). Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br. J. Sports Med. 43: 352-356.
http://dx.doi.org/10.1136/bjsm.2008.056150
PMid:19193663
Samnegard A, Silveira A, Lundman P, Boquist S, et al. (2005). Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction. J. Intern. Med. 258: 411-419.
http://dx.doi.org/10.1111/j.1365-2796.2005.01561.x
PMid:16238676
Stevens KJ and Dragoo JL (2006). Anterior cruciate ligament tears and associated injuries. Top. Magn. Reson. Imaging 17: 347-362.
http://dx.doi.org/10.1097/RMR.0b013e3180421cc2
PMid:17414996
Takahashi M, Haro H, Wakabayashi Y, Kawauchi T, et al. (2001). The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J. Bone Joint Surg. Br. 83: 491-495.
http://dx.doi.org/10.1302/0301-620X.83B4.11617
PMid:11380116
Ye S (2000). Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 19: 623-629.
http://dx.doi.org/10.1016/S0945-053X(00)00102-5
Yougu H (2004). Hernia of intervertebral discs in Chinese. People's Medical Publishing House.
Yuan HY, Tang Y, Liang YX, Lei L, et al. (2010). Matrix metalloproteinase-3 and vitamin d receptor genetic polymorphisms, and their interactions with occupational exposure in lumbar disc degeneration. J. Occup. Health 52: 23-30.
http://dx.doi.org/10.1539/joh.L8149
PMid:20009418
“Association of the IL-6 -174G/C gene polymorphism with knee osteoarthritis in a Thai population”, vol. 10, pp. 1674-1680, 2011.
, Banks SE (2010). Erosive osteoarthritis: a current review of a clinical challenge. Clin. Rheumatol. 29: 697-706.
http://dx.doi.org/10.1007/s10067-009-1369-7
PMid:20108014
Bowcock AM, Kidd JR, Lathrop GM, Daneshvar L, et al. (1988). The human âinterferon-beta 2/hepatocyte stimulating factor/interleukin-6â gene: DNA polymorphism studies and localization to chromosome 7p21. Genomics 3: 8-16.
http://dx.doi.org/10.1016/0888-7543(88)90152-8
Fernández-Real JM, Broch M, Vendrell J, Richart C, et al. (2000). Interleukin-6 gene polymorphism and lipid abnormalities in healthy subjects. J. Clin. Endocrinol. Metab. 85: 1334-1339.
http://dx.doi.org/10.1210/jc.85.3.1334
Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, et al. (1998). The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102: 1369-1376.
http://dx.doi.org/10.1172/JCI2629
PMid:9769329 PMCid:508984
Goldring SR and Goldring MB (2004). The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. S27-S36.
http://dx.doi.org/10.1097/01.blo.0000144854.66565.8f
PMid:15480070
Ishihara K and Hirano T (2002). IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 13: 357-368.
http://dx.doi.org/10.1016/S1359-6101(02)00027-8
Jikko A, Wakisaka T, Iwamoto M, Hiranuma H, et al. (1998). Effects of interleukin-6 on proliferation and proteoglycan metabolism in articular chondrocyte cultures. Cell Biol. Int. 22: 615-621.
http://dx.doi.org/10.1006/cbir.1998.0304
PMid:10452831
Kämäräinen OP, Solovieva S, Vehmas T, Luoma K, et al. (2008). Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteoarthritis. Arthritis Res. Ther. 10: R21.
Kaneko S, Satoh T, Chiba J, Ju C, et al. (2000). Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell Mol. Ther. 6: 71-79.
http://dx.doi.org/10.1080/13684730050515796
Kellgren JH and Lawrence JS (1957). Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16: 494-502.
http://dx.doi.org/10.1136/ard.16.4.494
PMid:13498604 PMCid:1006995
Krasnokutsky S, Attur M, Palmer G, Samuels J, et al. (2008). Current concepts in the pathogenesis of osteoarthritis. Osteoarthritis Cartilage 16 (Suppl 3): S1-S3.
http://dx.doi.org/10.1016/j.joca.2008.06.025
PMid:18723377
Krenn V, Hensel F, Kim HJ, Souto Carneiro MM, et al. (1999). Molecular IgV(H) analysis demonstrates highly somatic mutated B cells in synovialitis of osteoarthritis: a degenerative disease is associated with a specific, not locally generated immune response. Lab. Invest. 79: 1377-1384.
PMid:10576208
Loeser RF (2009). Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 17: 971-979.
http://dx.doi.org/10.1016/j.joca.2009.03.002
PMid:19303469 PMCid:2713363
Mohtai M, Gupta MK, Donlon B, Ellison B, et al. (1996). Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. J. Orthop. Res. 14: 67-73.
http://dx.doi.org/10.1002/jor.1100140112
PMid:8618168
Pola E, Papaleo P, Pola R, Gaetani E, et al. (2005). Interleukin-6 gene polymorphism and risk of osteoarthritis of the hip: a case-control study. Osteoarthritis Cartilage 13: 1025-1028.
http://dx.doi.org/10.1016/j.joca.2005.07.011
PMid:16198603
Steinmeyer J (2004). Cytokines in osteoarthritis-current status on the pharmacological intervention. Front. Biosci. 9: 575-580.
http://dx.doi.org/10.2741/1253
PMid:14766392
Valdes AM, Loughlin J, Oene MV, Chapman K, et al. (2007). Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 56: 137-146.
http://dx.doi.org/10.1002/art.22301
“Gene expression analysis of demineralized bone matrix-induced osteogenesis in human periosteal cells using cDNA array technology”, vol. 10, pp. 2093-2103, 2011.
, Beck GR Jr, Zerler B and Moran E (2001). Gene array analysis of osteoblast differentiation. Cell Growth Differ. 12: 61-83.
PMid:11243467
Boskey AL, Spevak L, Doty SB and Rosenberg L (1997). Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif. Tissue Int. 61: 298-305.
http://dx.doi.org/10.1007/s002239900339
PMid:9312200
Chen WB, Lenschow W, Tiede K, Fischer JW, et al. (2002). Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J. Biol. Chem. 277: 36118-36128.
http://dx.doi.org/10.1074/jbc.M203709200
PMid:12140283
Ducy P, Schinke T and Karsenty G (2000). The osteoblast: a sophisticated fibroblast under central surveillance. Science 289: 1501-1504.
http://dx.doi.org/10.1126/science.289.5484.1501
PMid:10968779
Honsawek S, Powers RM and Wolfinbarger L (2005). Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank. 6: 13-23.
http://dx.doi.org/10.1007/s10561-005-1445-4
PMid:15735897
Honsawek S, Dhitiseith D and Phupong V (2006). Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J. Med. Assoc. Thai. 89 (Suppl 3): S189-S195.
PMid:17718287
Honsawek S, Dhitiseith D and Phupong V (2007). Gene expression characteristics of osteoblast differentiation in human umbilical cord mesenchymal stem cells induced by demineralized bone matrix. Asian Biomed. 1: 383-391.
Honsawek S, Bumrungpanichthaworn P and Thanakit V (2010). Osteoinductive potential of small intestinal submucosa/ demineralized bone matrix as composite scaffolds for bone tissue engineering. Asian Biomed. 4: 913-922.
Hutmacher DW and Sittinger M (2003). Periosteal cells in bone tissue engineering. Tissue Eng. 9 (Suppl 1): S45-S64.
http://dx.doi.org/10.1089/10763270360696978
PMid:14511470
Locklin RM, Riggs BL, Hicok KC, Horton HF, et al. (2001). Assessment of gene regulation by bone morphogenetic protein 2 in human marrow stromal cells using gene array technology. J. Bone Miner. Res. 16: 2192-2204.
http://dx.doi.org/10.1359/jbmr.2001.16.12.2192
PMid:11760832
Meirowitz NB, Smulian JC, Hahn RA, Zhou P, et al. (2002). Collagen messenger RNA expression in the human amniochorion in premature rupture of membranes. Am. J. Obstet. Gynecol. 187: 1679-1685.
http://dx.doi.org/10.1067/mob.2002.127595
PMid:12501083
Schena M, Shalon D, Heller R, Chai A, et al. (1996). Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. U. S. A. 93: 10614-10619.
http://dx.doi.org/10.1073/pnas.93.20.10614
Walchli C, Koch M, Chiquet M, Odermatt BF, et al. (1994). Tissue-specific expression of the fibril-associated collagens XII and XIV. J. Cell Sci. 107: 669-681.
PMid:8207089
Wolfinbarger L Jr and Zheng Y (1993). An in vitro bioassay to assess biological activity in demineralized bone. In Vitro Cell Dev. Biol. Anim. 29A: 914-916.
http://dx.doi.org/10.1007/BF02634228
Xu T, Bianco P, Fisher LW, Longenecker G, et al. (1998). Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat. Genet. 20: 78-82.
http://dx.doi.org/10.1038/2477
PMid:9771711
Zhang M, Powers RM Jr and Wolfinbarger L Jr (1997). A quantitative assessment of osteoinductivity of human demineralized bone matrix. J. Periodontol. 68: 1076-1084.
PMid:9407400