Publications

Found 4 results
Filters: Author is D.T. Covas  [Clear All Filters]
2013
P. S. Monzani, Sangalli, J. R., de Bem, T. H. C., Bressan, F. F., Fantinato-Neto, P., Pimentel, J. R. V., Birgel-Junior, E. H., Fontes, A. M., Covas, D. T., and Meirelles, F. V., Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning, vol. 12, pp. 3675-3688, 2013.
C. S. Palma, Tannous, M. A., Malta, T. M., Russo, E. M. S., Covas, D. T., and Picanço-Castro, V., Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts, vol. 12. pp. 1054-1060, 2013.
Berg JS and Goodell MA (2007). An argument against a role for Oct4 in somatic stem cells. Cell Stem Cell 1: 359-360. http://dx.doi.org/10.1016/j.stem.2007.09.007 PMid:18371372   Boyer LA, Lee TI, Cole MF, Johnstone SE, et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956. http://dx.doi.org/10.1016/j.cell.2005.08.020 PMid:16153702 PMCid:3006442   Chambers I (2004). The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells 6: 386-391. http://dx.doi.org/10.1089/clo.2004.6.386 PMid:15671667   Chambers I and Tomlinson SR (2009). The transcriptional foundation of pluripotency. Development 136: 2311-2322. http://dx.doi.org/10.1242/dev.024398 PMid:19542351 PMCid:2729344   Go MJ, Takenaka C and Ohgushi H (2008). Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Exp. Cell Res. 314: 1147-1154. http://dx.doi.org/10.1016/j.yexcr.2007.11.021 PMid:18187129   Greco SJ, Liu K and Rameshwar P (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25: 3143-3154. http://dx.doi.org/10.1634/stemcells.2007-0351 PMid:17761754   Izadpanah R, Trygg C, Patel B, Kriedt C, et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell Biochem. 99: 1285-1297. http://dx.doi.org/10.1002/jcb.20904 PMid:16795045   Kaltz N, Funari A, Hippauf S, Delorme B, et al. (2008). In vivo osteoprogenitor potency of human stromal cells from different tissues does not correlate with expression of POU5F1 or its pseudogenes. Stem Cells 26: 2419-2424. http://dx.doi.org/10.1634/stemcells.2008-0304 PMid:18617685   Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, et al. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1: 403-415. http://dx.doi.org/10.1016/j.stem.2007.07.020 PMid:18159219 PMCid:2151746   Lengner CJ, Welstead GG and Jaenisch R (2008). The pluripotency regulator Oct4: a role in somatic stem cells? Cell Cycle 7: 725-728. http://dx.doi.org/10.4161/cc.7.6.5573 PMid:18239456   Liedtke S, Enczmann J, Waclawczyk S, Wernet P, et al. (2007). Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1: 364-366. http://dx.doi.org/10.1016/j.stem.2007.09.003 PMid:18371374   Pan G and Thomson JA (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 17: 42-49. http://dx.doi.org/10.1038/sj.cr.7310125 PMid:17211451   Pan GJ, Chang ZY, Schöler HR and Pei D (2002). Stem cell pluripotency and transcription factor Oct4. Cell Res. 12: 321-329. http://dx.doi.org/10.1038/sj.cr.7290134 PMid:12528890   Pochampally RR, Smith JR, Ylostalo J and Prockop DJ (2004). Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103: 1647-1652. http://dx.doi.org/10.1182/blood-2003-06-1967 PMid:14630823   Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 5: 378-386. http://dx.doi.org/10.1007/s12015-009-9094-9 PMid:20058201   Scheper W and Copray S (2009). The molecular mechanism of induced pluripotency: a two-stage switch. Stem Cell Rev. 5: 204-223. http://dx.doi.org/10.1007/s12015-009-9077-x PMid:19551525   Takahashi K, Tanabe K, Ohnuki M, Narita M, et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872. http://dx.doi.org/10.1016/j.cell.2007.11.019 PMid:18035408   Varlakhanova NV, Cotterman RF, deVries WN, Morgan J, et al. (2010). myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80: 9-19. http://dx.doi.org/10.1016/j.diff.2010.05.001 PMid:20537458 PMCid:2916696   Wang X and Dai J (2010). Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 28: 885-893. PMid:20333750 PMCid:2962909   Zago MA (2006). Células-Tronco: Origens e Propriedades. In: Células-Tronco: A Nova Fronteira da Medicina (Covas DT and Zago MA, eds.). Editora Atheneu, São Paulo, 3-20.
2012
A. M. Fontes, Melo, F. U. F., Greene, L. J., Faça, V. M., Lin, Y., Gerson, S. L., and Covas, D. T., Production of human factor VIII-FL in 293T cells using the bicistronic MGMT(P140K)-retroviral vector, vol. 11, pp. 775-789, 2012.
Ashrani AA, Reding MT, Shet A, Osip J, et al. (2004). Successful liver transplantation in a patient with severe haemophilia A and a high-titre factor VIII inhibitor. Haemophilia 10: 735-737. http://dx.doi.org/10.1111/j.1365-2516.2004.01030.x PMid:15569170 Beard BC, Trobridge GD, Ironside C, McCune JS, et al. (2010). Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J. Clin. Invest. 120: 2345-2354. http://dx.doi.org/10.1172/JCI40767 PMid:20551514    PMCid:2898586 Becker S, Simpson JC, Pepperkok R, Heinz S, et al. (2004). Confocal microscopy analysis of native, full length and B-domain deleted coagulation factor VIII trafficking in mammalian cells. Thromb. Haemost. 92: 23-35. PMid:15213841 Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJ, et al. (2005). The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J. Thromb. Haemost. 3: 1257-1265. http://dx.doi.org/10.1111/j.1538-7836.2005.01389.x PMid:15946216 Camire RM (2010). Hemophilia: basic and translational science. Expert. Rev. Hematol. 3: 149-151. http://dx.doi.org/10.1586/ehm.10.15 PMid:21083457 Chang AH, Stephan MT, Lisowski L and Sadelain M (2008). Erythroid-specific human factor IX delivery from in vivo selected hematopoietic stem cells following nonmyeloablative conditioning in hemophilia B mice. Mol. Ther. 16: 1745-1752. http://dx.doi.org/10.1038/mt.2008.161 PMid:18682698    PMCid:2658893 Cohen SN, Chang AC and Hsu L (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U. S. A. 69: 2110-2114. http://dx.doi.org/10.1073/pnas.69.8.2110 Dalby B, Cates S, Harris A, Ohki EC, et al. (2004). Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33: 95-103. http://dx.doi.org/10.1016/j.ymeth.2003.11.023 PMid:15121163 Dingermann T (2008). Recombinant therapeutic proteins: production platforms and challenges. Biotechnol. J. 3: 90-97. http://dx.doi.org/10.1002/biot.200700214 PMid:18041103 Fallaux FJ, Hoeben RC, Cramer SJ, van den Wollenberg DJ, et al. (1996). The human clotting factor VIII cDNA contains an autonomously replicating sequence consensus- and matrix attachment region-like sequence that binds a nuclear factor, represses heterologous gene expression, and mediates the transcriptional effects of sodium butyrate. Mol. Cell Biol. 16: 4264-4272. PMid:8754827    PMCid:231425 Fay PJ (1993). Factor VIII structure and function. Thromb. Haemost. 70: 63-67. PMid:8236116 Fontes AM, Davis BM, Encell LP, Lingas K, et al. (2006). Differential competitive resistance to methylating versus chloroethylating agents among five O6-alkylguanine DNA alkyltransferases in human hematopoietic cells. Mol. Cancer Ther. 5: 121-128. http://dx.doi.org/10.1158/1535-7163.MCT-05-0236 PMid:16432170 Franchini M (2010). Plasma-derived versus recombinant factor VIII concentrates for the treatment of haemophilia A: recombinant is better. Blood Transfus. 8: 292-296. PMid:20967172    PMCid:2957496 Furie B and Furie BC (1988). The molecular basis of blood coagulation. Cell 53: 505-518. http://dx.doi.org/10.1016/0092-8674(88)90567-3 Goudemand J, Rothschild C, Demiguel V, Vinciguerrat C, et al. (2006). Influence of the type of factor VIII concentrate on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A. Blood 107: 46-51. http://dx.doi.org/10.1182/blood-2005-04-1371 PMid:16166584 Grillberger L, Kreil TR, Nasr S and Reiter M (2009). Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol. J. 4: 186-201. http://dx.doi.org/10.1002/biot.200800241 PMid:19226552    PMCid:2699044 Gringeri A, Mantovani LG, Scalone L and Mannucci PM (2003). Cost of care and quality of life for patients with hemophilia complicated by inhibitors: the COCIS Study Group. Blood 102: 2358-2363. http://dx.doi.org/10.1182/blood-2003-03-0941 PMid:12816859 Josephson CD and Abshire T (2004). The new albumin-free recombinant factor VIII concentrates for treatment of hemophilia: do they represent an actual incremental improvement? Clin. Adv. Hematol. Oncol. 2: 441-446. PMid:16163220 Larochelle A, Krouse A, Metzger M, Orlic D, et al. (2006). AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 107: 3772-3778. http://dx.doi.org/10.1182/blood-2005-09-3592 PMid:16439684    PMCid:1895780 Manco-Johnson MJ (2003). Update on treatment regimens: prophylaxis versus on-demand therapy. Semin. Hematol. 40: 3-9. http://dx.doi.org/10.1016/S0037-1963(03)80732-1 Neff T, Horn PA, Peterson LJ, Thomasson BM, et al. (2003). Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J. Clin. Invest. 112: 1581-1588. PMid:14617759    PMCid:259127 Neff T, Beard BC, Peterson LJ, Anandakumar P, et al. (2005). Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood 105: 997-1002. http://dx.doi.org/10.1182/blood-2004-08-3169 PMid:15494421 Persons DA, Allay ER, Sawai N, Hargrove PW, et al. (2003). Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 102: 506-513. http://dx.doi.org/10.1182/blood-2003-03-0677 PMid:12663444 Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, et al. (2001). Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 98: 7029-7036. http://dx.doi.org/10.1073/pnas.111145798 PMid:11416183    PMCid:34618 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 Pipe SW (2008). Recombinant clotting factors. Thromb. Haemost. 99: 840-850. PMid:18449413 Pipe SW (2009). Functional roles of the factor VIII B domain. Haemophilia 15: 1187-1196. http://dx.doi.org/10.1111/j.1365-2516.2009.02026.x PMid:19473417 Pipe SW, High KA, Ohashi K, Ural AU, et al. (2008). Progress in the molecular biology of inherited bleeding disorders. Haemophilia 14 (Suppl 3): 130-137. http://dx.doi.org/10.1111/j.1365-2516.2008.01718.x PMid:18510533 Pipe SW, Miao H, Butler SP, Calcaterra J, et al. (2011). Functional factor VIII made with von Willebrand factor at high levels in transgenic milk. J. Thromb. Haemost. 9: 2235-2242. http://dx.doi.org/10.1111/j.1538-7836.2011.04505.x PMid:21920013 Pittman DD, Alderman EM, Tomkinson KN, Wang JH, et al. (1993). Biochemical, immunological, and in vivo functional characterization of B-domain-deleted factor VIII. Blood 81: 2925-2935. PMid:8499631 Reese JS, Koc ON, Lee KM, Liu L, et al. (1996). Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus 1,3-bis(2-chloroethyl)-1-nitrosourea. Proc. Natl. Acad. Sci. U. S. A. 93: 14088-14093. http://dx.doi.org/10.1073/pnas.93.24.14088 Soucie JM, Evatt B and Jackson D (1998). Occurrence of hemophilia in the United States. The Hemophilia Surveillance System Project Investigators. Am. J. Hematol. 59: 288-294. http://dx.doi.org/10.1002/(SICI)1096-8652(199812)59:4<288::AID-AJH4>3.0.CO;2-I Toole JJ, Pittman DD, Orr EC, Murtha P, et al. (1986). A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc. Natl. Acad. Sci. U. S. A. 83: 5939-5942. http://dx.doi.org/10.1073/pnas.83.16.5939 Van Damme A, Thorrez L, Ma L, Vandenburgh H, et al. (2006). Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 24: 896-907. http://dx.doi.org/10.1634/stemcells.2003-0106 PMid:16339997 Wang H, Shen XT, Ye R, Lan SY, et al. (2005). Roles of the polypyrimidine tract and 3' noncoding region of hepatitis C virus RNA in the internal ribosome entry site-mediated translation. Arch. Virol. 150: 1085-1099. http://dx.doi.org/10.1007/s00705-005-0491-3 PMid:15747050 Yokoyama S, Bartlett A, Dar FS, Heneghan M, et al. (2011). Outcome of liver transplantation for haemophilia. HPB 13: 40-45. http://dx.doi.org/10.1111/j.1477-2574.2010.00237.x PMid:21159102    PMCid:3019540 Zhao H, Pestina TI, Nasimuzzaman M, Mehta P, et al. (2009). Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood 113: 5747-5756. http://dx.doi.org/10.1182/blood-2008-10-186684 PMid:19365082    PMCid:2700315 Zielske SP, Reese JS, Lingas KT, Donze JR, et al. (2003). In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J. Clin. Invest. 112: 1561-1570. PMid:14617757    PMCid:259124