Found 14 results
Filters: Author is A.D. da Cruz  [Clear All Filters]
H. F. Nunes, Laranjeira, A. B. A., Yunes, J. A., Costa, E. O. A., Melo, C. Ode A., D. Silva, deM. e, and da Cruz, A. D., Assessment of BCL2/J(H) translocation in healthy individuals exposed to low-level radiation of 137CsCl in Goiânia, Goiás, Brazil, vol. 12. pp. 28-36, 2013.
Adami J, Gridley G, Nyren O, Dosemeci M, et al. (1999). Sunlight and non-Hodgkin's lymphoma: a population-based cohort study in Sweden. Int. J. Cancer 80: 641-645.<641::AID-IJC1>3.0.CO;2-Z   Agopian J, Navarro JM, Gac AC, Lecluse Y, et al. (2009). Agricultural pesticide exposure and the molecular connection to lymphomagenesis. J. Exp. Med. 206: 1473-1483. PMid:19506050 PMCid:2715093   Armitage JO and Weisenburger DD (1998). New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J. Clin. Oncol. 16: 2780-2795. PMid:9704731   Bell DA, Liu Y and Cortopassi GA (1995). Occurrence of bcl-2 oncogene translocation with increased frequency in the peripheral blood of heavy smokers. J. Natl. Cancer Inst. 87: 223-224. PMid:7707410   Bentham G, Wolfreys AM, Yafei L, Cortopassi G, et al. (1999). Frequencies of hprt- mutations and bcl-2 translocations in circulating human lymphocytes are correlated with United Kingdom sunlight records. Mutagenesis 14: 527-532. PMid:10567026   Cleary ML and Sklar J (1985). Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. U. S. A. 82: 7439-7443. PMid:2865728 PMCid:391360   da Cruz AD, de Melo e Silva, da Silva CC, Nelson RJ, et al. (2008). Microsatellite mutations in the offspring of irradiated parents 19 years after the Cesium-137 accident. Mutat. Res. 652: 175-179. PMid:18346932   Deininger MW, Bose S, Gora-Tybor J, Yan XH, et al. (1998). Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res. 58: 421-425. PMid:9458083   Dölken G, Illerhaus G, Hirt C and Mertelsmann R (1996). BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. J. Clin. Oncol. 14: 1333-1344. PMid:8648392   Dölken G, Dölken L, Hirt C, Fusch C, et al. (2008). Age-dependent prevalence and frequency of circulating t(14;18)-H.F. Nunes et al. positive cells in the peripheral blood of healthy individuals. J. Natl. Cancer Inst. Monogr. 39: 44-47. PMid:18648002   Dölken L, Schüler F and Dölken G (2002). Frequency of BCL-2/J(H) translocation in healthy males exposed to low-level radiation in comparison to age-matched health controls. Blood 100: 1513-1514. PMid:12184277   Fuscoe JC, Setzer RW, Collard DD and Moore MM (1996). Quantification of t(14;18) in the lymphocytes of healthy adult humans as a possible biomarker for environmental exposures to carcinogens. Carcinogenesis 17: 1013-1020. PMid:8640906   Jager U, Bocskor S, Le T, Mitterbauer G, et al. (2000). Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95: 3520-3529. PMid:10828038   Limpens J, de Jong D, van Krieken JH, Price CG, et al. (1991). Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 6: 2271-2276. PMid:1766674   Mahfouz R, Shammaa D, Tawil A and Zaatari G (2007). Molecular frequency of BCL2/JH t(14; 18) using PCR among Lebanese patients with follicular lymphoma: another piece of the geographical map revealed. Mol. Biol. Rep. 34: 271-274. PMid:17149654   McDonnell TJ and Korsmeyer SJ (1991). Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349: 254-256. PMid:1987477   Rabkin CS, Hirt C, Janz S and Dölken G (2008). t(14;18) Translocations and risk of follicular lymphoma. J. Natl. Cancer Inst. Monogr. 48-51. PMid:18648003   Schüler F, Hirt C and Dölken G (2003). Chromosomal translocation t(14;18) in healthy individuals. Semin. Cancer Biol. 13: 203-209.   Yasukawa M, Bando S, Dölken G, Sada E, et al. (2001). Low frequency of BCL-2/J(H) translocation in peripheral blood lymphocytes of healthy Japanese individuals. Blood 98: 486-488. PMid:11435322
L. B. Minasi, Costa, E. O. A., Silva, D. M., Melo, C. O. A., de Almeida, J. G., Vieira, T. C., Júnior, R. L. Silva, Ribeiro, C. L., da Silva, C. C., and da Cruz, A. D., Cytogenetic damage in the buccal epithelium of Brazilian aviators occupationally exposed to agrochemicals, vol. 10. pp. 3924-3929, 2011.
Amthor H, Nicholas G, McKinnell I, Kemp CF, et al. (2004). Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev. Biol. 270: 19-30. PMid:15136138   Diel P, Schiffer T, Geisler S, Hertrampf T, et al. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol. Cell Endocrinol. 330: 1-9. PMid:20801187   Dinh P, Hazel A, Palispis W, Suryadevara S, et al. (2009). Functional assessment after sciatic nerve injury in a rat model. Microsurgery 29: 644-649. PMid:19653327   Gilson H, Schakman O, Kalista S, Lause P, et al. (2009). Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 297: E157-E164. PMid:19435857   Hill JJ, Davies MV, Pearson AA, Wang JH, et al. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735-40741. PMid:12194980   Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, et al. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell Endocrinol. 302: 26-32. PMid:19356623   Lee SJ (2010). Extracellular regulation of myostatin: A molecular rheostat for muscle mass. Immunol. Endocr. Metab. Agents Med. Chem. 10: 183-194. PMid:21423813 PMCid:3060380   Lee SJ and McPherron AC (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U. S. A. 98: 9306-9311. PMid:11459935 PMCid:55416   Lee SJ, Lee YS, Zimmers TA, Soleimani A, et al. (2010). Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24: 1998-2008. PMid:20810712 PMCid:2954636   Liu M, Zhang D, Shao C, Liu J, et al. (2007). Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 35: 649-656. PMid:17326119   Matzuk MM, Lu N, Vogel H, Sellheyer K, et al. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature 374: 360-363. PMid:7885475   McPherron AC, Lawler AM and Lee SJ (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83-90. PMid:9139826   Rodino-Klapac LR, Haidet AM, Kota J, Handy C, et al. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39: 283-296. PMid:19208403 PMCid:2717722   Thies RS, Chen T, Davies MV, Tomkinson KN, et al. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18: 251-259. PMid:11519824   Thompson TB, Lerch TF, Cook RW, Woodruff TK, et al. (2005). The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9: 535-543. PMid:16198295   Ueno N, Ling N, Ying SY, Esch F, et al. (1987). Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 84: 8282-8286. PMid:3120188 PMCid:299526   Wallimann T, Wyss M, Brdiczka D, Nicolay K, et al. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21-40. PMid:1731757 PMCid:1130636   Whittemore LA, Song K, Li X, Aghajanian J, et al. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300: 965-971.   Wolfman NM, McPherron AC, Pappano WN, Davies MV, et al. (2003). Activation of latent myostatin by the BMP-1/ tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. U. S. A. 100: 15842-15846. PMid:14671324 PMCid:307655   Zhang D, Liu M, Ding F and Gu X (2006). Expression of myostatin RNA transcript and protein in gastrocnemius muscle of rats after sciatic nerve resection. J. Muscle Res. Cell Motil. 27: 37-44. PMid:16450055
C. O. A. Melo, Danin, A. R., Silva, D. M., Tacon, J. A., Moura, K. K. V. O., Costa, E. O. A., and da Cruz, A. D., Association between male infertility and androgen receptor mutations in Brazilian patients, vol. 9, pp. 128-133, 2010.
Brinkmann AO and Trapman J (2000). Genetic analysis of androgen receptors in development and disease. Adv. Pharmacol. 47: 317-341.   Domenice S, Costa EMF, Corrêa RV and Mendonça BB (2002). Molecular aspects of sexual determination and differentiation. [Aspectos moleculares da determinação e diferenciação sexual]. Arq. Bras. Endocrinol. Metab. 46: 433-443.   Eskenazi B, Wyrobek AJ, Sloter E, Kidd SA, et al. (2003). The association of age and semen quality in healthy men. Hum. Reprod. 18: 447-454. PMid:12571189   Ferlin A, Bartoloni L, Rizzo G, Roverato A, et al. (2004). Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility. Mol. Hum. Reprod. 10: 417-421. PMid:15044606   Fuentes-Mascorro G, Serrano H and Rosado A (2000). Sperm chromatin. Arch. Androl. 45: 215-225. PMid:11111870   Genetics and Molecular Research 9 (1): 128-133 (2010) ©FUNPEC-RP   Male infertility and androgen receptor mutations   Gottlieb B, Lombroso R, Beitel LK and Trifiro MA (2005). Molecular pathology of the androgen receptor in male (in)fertility. Reprod. Biomed. (Online) 10: 42-48.   Holdcraft RW and Braun RE (2004). Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131: 459-467. PMid:14701682   Kunzle R, Mueller MD, Hanggi W, Birkhauser MH, et al. (2003). Semen quality of male smokers and nonsmokers in infertile couples. Fertil. Steril. 79: 287-291.   Lim J, Ghadessy FJ, Abdullah AA, Pinsky L, et al. (2000). Human androgen receptor mutation disrupts ternary interactions between ligand, receptor domains, and the coactivator TIF2 (transcription intermediary factor 2). Mol. Endocrinol. 14: 1187-1197. PMid:10935543   Lopes S, Jurisicova A, Sun JG and Casper RF (1998). Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13: 896-900. PMid:9619544   Lubahn DB, Joseph DR, Sullivan PM, Willard HF, et al. (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240: 327-330. PMid:3353727   Sailer BL, Jost LK and Evenson DP (1995). Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J. Androl. 16: 80-87. PMid:7768756   Uehara S, Hashiyada M, Sato K, Sato Y, et al. (2001). Preferential X-chromosome inactivation in women with idiopathic recurrent pregnancy loss. Fertil. Steril. 76: 908-914.   Yong EL, Loy CJ and Sim KS (2003). Androgen receptor gene and male infertility. Hum. Reprod. Update 9: 1-7. PMid:12638777
A. A. S. Reis, Silva, D. M., Curado, M. P., and da Cruz, A. D., Involvement of CYP1A1, GST, 72TP53 polymorphisms in the pathogenesis of thyroid nodules, vol. 9, pp. 2222-2229, 2010.
Agundez JA (2004). Cytochrome P450 gene polymorphism and cancer. Curr. Drug Metab. 5: 211-224. PMid:15180491   Almeida PS, Manoel WJ, Reis AA, Silva ER, et al. (2008). TP53 codon 72 polymorphism in adult soft tissue sarcomas. Genet. Mol. Res. 7: 1344-1352. PMid:19065769   Aral C, Çaglayan S, Ösizik G, Massoumilary S, et al. (2007). The association of P53 codon 72 polymorphism with thyroid cancer in Turkish patients. Marmara Med. J. 20: 1-5.   Boltze C, Roessner A, Landt O, Szibor R, et al. (2002). Homozygous proline at codon 72 of p53 as a potential risk factor favoring the development of undifferentiated thyroid carcinoma. Int. J. Oncol. 21: 1151-1154. PMid:12370767   Bozina N, Bradamante V and Lovric M (2009). Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh. Hig. Rada Toksikol. 60: 217-242. PMid:19581216   Bufalo NE, Leite JL, Guilhen AC, Morari EC, et al. (2006). Smoking and susceptibility to thyroid cancer: an inverse association with CYP1A1 allelic variants. Endocr. Relat. Cancer 13: 1185-1193. PMid:17158763   Chen RH, Chang CT, Wang TY, Huang WL, et al. (2008). p53 codon 72 proline/arginine polymorphism and autoimmune thyroid diseases. J. Clin. Lab. Anal. 22: 321-326. PMid:18803266   Dean DS and Gharib H (2008). Epidemiology of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 22: 901-911. PMid:19041821   Gaspar J, Rodrigues S, Gil OM, Manita I, et al. (2004). Combined effects of glutathione S-transferase polymorphisms and thyroid cancer risk. Cancer Genet. Cytogenet. 151: 60-67. PMid:15120911   Gonçalves AJ, Carvalho LH, Serdeira K, Nakai MY, et al. (2007). Comparative analysis of the prevalence of the glutathione S-transferase (GST) system in malignant and benign thyroid tumor cells. São Paulo Med. J. 125: 289-291. PMid:18094897   Hegedüs L (2004). Clinical practice. The thyroid nodule. N. Engl. J. Med. 351: 1764-1771. PMid:15496625   Hegedüs L, Bonnema SJ and Bennedbaek FN (2003). Management of simple nodular goiter: current status and future perspectives. Endocr. Rev. 24: 102-132. PMid:12588812   Hernández A, Céspedes W, Xamena N, Surrallés J, et al. (2003). Glutathione S-transferase polymorphisms in thyroid cancer patients. Cancer Lett. 190: 37-44.   Ho T, Zhao C, Zheng R, Liu Z, et al. (2006). Glutathione S-transferase polymorphisms and risk of differentiated thyroid carcinomas: a case-control analysis. Arch. Otolaryngol. Head Neck Surg. 132: 756-761. PMid:16847185   Lemos MC, Coutinho E, Gomes L, Carrilho F, et al. (2008). Combined GSTM1 and GSTT1 null genotypes are associated with a lower risk of papillary thyroid cancer. J. Endocrinol. Invest. 31: 542-545. PMid:18591888   Masson LF, Sharp L, Cotton SC and Little J (2005). Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: A HuGE review. Am. J. Epidemiol. 161: 901-915. PMid:15870154   Mazzaferri EL (2006). Managing small thyroid cancer. JAMA 295: 2179-2182.   Morari EC, Leite JL, Granja F, da Assumpcao LV, et al. (2002). The null genotype of glutathione s-transferase M1 and T1 locus increases the risk for thyroid cancer. Cancer Epidemiol. Biomarkers Prev. 11: 1485-1488. PMid:12433731   Nebert DW, McKinnon RA and Puga A (1996). Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 15: 273-280. PMid:8639263   Rossini A, Rapozo DC, Amorim LM, Macedo JM, et al. (2002). Frequencies of GSTM1, GSTT1, and GSTP1 polymorphisms in a Brazilian population. Genet. Mol. Res. 1: 233-240. PMid:14963830   Siraj AK, Ibrahim M, Al-Rasheed M, Abubaker J, et al. (2008). Polymorphisms of selected xenobiotic genes contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. B.M.C. Med. Genet. 9: 61. PMid:18601742 PMCid:2492854   Song N, Tan W, Xing D and Lin D (2001). CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis 22: 11-16. PMid:11159735   Sourvinos G, Rizos E and Spandidos DA (2001). p53 Codon 72 polymorphism is linked to the development and not the progression of benign and malignant laryngeal tumours. Oral Oncol. 37: 572-578.   Stankov K, Landi S, Gioia-Patricola L, Bonora E, et al. (2006). GSTT1 and M1 polymorphisms in Hürthle thyroid cancer patients. Cancer Lett. 240: 76-82. PMid:16427734   Sweeney C, Farrow DC, Schwartz SM, Eaton DL, et al. (2000). Glutathione S-transferase M1, T1, and P1 polymorphisms as risk factors for renal cell carcinoma: a case-control study. Cancer Epidemiol. Biomarkers Prev. 9: 449-454. PMid:10794492