Publications
Found 14 results
Filters: Author is A.D. da Cruz [Clear All Filters]
“Environmental factors and polymorphisms of interleukin genes contribute to susceptibility to chronic periodontal disease”, Genetics and Molecular Research, vol. 19, no. 3, 2020.
, “High diversity of chromosomal aberrations in a Brazilian myelodysplastic syndrome cohort”, Genetics and Molecular Research, vol. 18, no. 2, 2019.
, “Genotoxicity of Brosimum gaudichaudii (Moraceae) and Caesalpinia ferrea (Fabaceae) in Astyanax sp. (Characidae) based on a comet assay”, Genetics and Molecular Research, vol. 17, no. 4, 2018.
, , ,
“Lack of association between IL-10 -1082G/A polymorphism and chronic periodontal disease in adults”, vol. 14, pp. 17828-17833, 2015.
, “Molecular analysis of patients suspected of Fragile X Syndrome”, vol. 14, pp. 14660-14669, 2015.
, “Postnatal diagnosis of constitutive ring chromosome 13 using both conventional and molecular cytogenetic approaches”, vol. 14, pp. 1692-1699, 2015.
, ,
“Assessment of BCL2/J(H) translocation in healthy individuals exposed to low-level radiation of 137CsCl in Goiânia, Goiás, Brazil”, vol. 12. pp. 28-36, 2013.
, Adami J, Gridley G, Nyren O, Dosemeci M, et al. (1999). Sunlight and non-Hodgkin's lymphoma: a population-based cohort study in Sweden. Int. J. Cancer 80: 641-645.
http://dx.doi.org/10.1002/(SICI)1097-0215(19990301)80:5<641::AID-IJC1>3.0.CO;2-Z
Agopian J, Navarro JM, Gac AC, Lecluse Y, et al. (2009). Agricultural pesticide exposure and the molecular connection to lymphomagenesis. J. Exp. Med. 206: 1473-1483.
http://dx.doi.org/10.1084/jem.20082842
PMid:19506050 PMCid:2715093
Armitage JO and Weisenburger DD (1998). New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J. Clin. Oncol. 16: 2780-2795.
PMid:9704731
Bell DA, Liu Y and Cortopassi GA (1995). Occurrence of bcl-2 oncogene translocation with increased frequency in the peripheral blood of heavy smokers. J. Natl. Cancer Inst. 87: 223-224.
http://dx.doi.org/10.1093/jnci/87.3.223
PMid:7707410
Bentham G, Wolfreys AM, Yafei L, Cortopassi G, et al. (1999). Frequencies of hprt- mutations and bcl-2 translocations in circulating human lymphocytes are correlated with United Kingdom sunlight records. Mutagenesis 14: 527-532.
http://dx.doi.org/10.1093/mutage/14.6.527
PMid:10567026
Cleary ML and Sklar J (1985). Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. U. S. A. 82: 7439-7443.
http://dx.doi.org/10.1073/pnas.82.21.7439
PMid:2865728 PMCid:391360
da Cruz AD, de Melo e Silva, da Silva CC, Nelson RJ, et al. (2008). Microsatellite mutations in the offspring of irradiated parents 19 years after the Cesium-137 accident. Mutat. Res. 652: 175-179.
http://dx.doi.org/10.1016/j.mrgentox.2008.02.002
PMid:18346932
Deininger MW, Bose S, Gora-Tybor J, Yan XH, et al. (1998). Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res. 58: 421-425.
PMid:9458083
Dölken G, Illerhaus G, Hirt C and Mertelsmann R (1996). BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. J. Clin. Oncol. 14: 1333-1344.
PMid:8648392
Dölken G, Dölken L, Hirt C, Fusch C, et al. (2008). Age-dependent prevalence and frequency of circulating t(14;18)-H.F. Nunes et al. positive cells in the peripheral blood of healthy individuals. J. Natl. Cancer Inst. Monogr. 39: 44-47.
http://dx.doi.org/10.1093/jncimonographs/lgn005
PMid:18648002
Dölken L, Schüler F and Dölken G (2002). Frequency of BCL-2/J(H) translocation in healthy males exposed to low-level radiation in comparison to age-matched health controls. Blood 100: 1513-1514.
http://dx.doi.org/10.1182/blood-2002-03-0887
PMid:12184277
Fuscoe JC, Setzer RW, Collard DD and Moore MM (1996). Quantification of t(14;18) in the lymphocytes of healthy adult humans as a possible biomarker for environmental exposures to carcinogens. Carcinogenesis 17: 1013-1020.
http://dx.doi.org/10.1093/carcin/17.5.1013
PMid:8640906
Jager U, Bocskor S, Le T, Mitterbauer G, et al. (2000). Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95: 3520-3529.
PMid:10828038
Limpens J, de Jong D, van Krieken JH, Price CG, et al. (1991). Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 6: 2271-2276.
PMid:1766674
Mahfouz R, Shammaa D, Tawil A and Zaatari G (2007). Molecular frequency of BCL2/JH t(14; 18) using PCR among Lebanese patients with follicular lymphoma: another piece of the geographical map revealed. Mol. Biol. Rep. 34: 271-274.
http://dx.doi.org/10.1007/s11033-006-9042-6
PMid:17149654
McDonnell TJ and Korsmeyer SJ (1991). Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349: 254-256.
http://dx.doi.org/10.1038/349254a0
PMid:1987477
Rabkin CS, Hirt C, Janz S and Dölken G (2008). t(14;18) Translocations and risk of follicular lymphoma. J. Natl. Cancer Inst. Monogr. 48-51.
http://dx.doi.org/10.1093/jncimonographs/lgn002
PMid:18648003
Schüler F, Hirt C and Dölken G (2003). Chromosomal translocation t(14;18) in healthy individuals. Semin. Cancer Biol. 13: 203-209.
http://dx.doi.org/10.1016/S1044-579X(03)00016-6
Yasukawa M, Bando S, Dölken G, Sada E, et al. (2001). Low frequency of BCL-2/J(H) translocation in peripheral blood lymphocytes of healthy Japanese individuals. Blood 98: 486-488.
http://dx.doi.org/10.1182/blood.V98.2.486
PMid:11435322
“Cytogenetic damage in the buccal epithelium of Brazilian aviators occupationally exposed to agrochemicals”, vol. 10. pp. 3924-3929, 2011.
,
Amthor H, Nicholas G, McKinnell I, Kemp CF, et al. (2004). Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev. Biol. 270: 19-30.
http://dx.doi.org/10.1016/j.ydbio.2004.01.046
PMid:15136138
Diel P, Schiffer T, Geisler S, Hertrampf T, et al. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol. Cell Endocrinol. 330: 1-9.
http://dx.doi.org/10.1016/j.mce.2010.08.015
PMid:20801187
Dinh P, Hazel A, Palispis W, Suryadevara S, et al. (2009). Functional assessment after sciatic nerve injury in a rat model. Microsurgery 29: 644-649.
http://dx.doi.org/10.1002/micr.20685
PMid:19653327
Gilson H, Schakman O, Kalista S, Lause P, et al. (2009). Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 297: E157-E164.
http://dx.doi.org/10.1152/ajpendo.00193.2009
PMid:19435857
Hill JJ, Davies MV, Pearson AA, Wang JH, et al. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735-40741.
http://dx.doi.org/10.1074/jbc.M206379200
PMid:12194980
Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, et al. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell Endocrinol. 302: 26-32.
http://dx.doi.org/10.1016/j.mce.2008.12.019
PMid:19356623
Lee SJ (2010). Extracellular regulation of myostatin: A molecular rheostat for muscle mass. Immunol. Endocr. Metab. Agents Med. Chem. 10: 183-194.
http://dx.doi.org/10.2174/187152210793663748
PMid:21423813 PMCid:3060380
Lee SJ and McPherron AC (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U. S. A. 98: 9306-9311.
http://dx.doi.org/10.1073/pnas.151270098
PMid:11459935 PMCid:55416
Lee SJ, Lee YS, Zimmers TA, Soleimani A, et al. (2010). Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24: 1998-2008.
http://dx.doi.org/10.1210/me.2010-0127
PMid:20810712 PMCid:2954636
Liu M, Zhang D, Shao C, Liu J, et al. (2007). Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 35: 649-656.
http://dx.doi.org/10.1002/mus.20749
PMid:17326119
Matzuk MM, Lu N, Vogel H, Sellheyer K, et al. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature 374: 360-363.
http://dx.doi.org/10.1038/374360a0
PMid:7885475
McPherron AC, Lawler AM and Lee SJ (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83-90.
http://dx.doi.org/10.1038/387083a0
PMid:9139826
Rodino-Klapac LR, Haidet AM, Kota J, Handy C, et al. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39: 283-296.
http://dx.doi.org/10.1002/mus.21244
PMid:19208403 PMCid:2717722
Thies RS, Chen T, Davies MV, Tomkinson KN, et al. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18: 251-259.
http://dx.doi.org/10.3109/08977190109029114
PMid:11519824
Thompson TB, Lerch TF, Cook RW, Woodruff TK, et al. (2005). The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9: 535-543.
http://dx.doi.org/10.1016/j.devcel.2005.09.008
PMid:16198295
Ueno N, Ling N, Ying SY, Esch F, et al. (1987). Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 84: 8282-8286.
http://dx.doi.org/10.1073/pnas.84.23.8282
PMid:3120188 PMCid:299526
Wallimann T, Wyss M, Brdiczka D, Nicolay K, et al. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21-40.
PMid:1731757 PMCid:1130636
Whittemore LA, Song K, Li X, Aghajanian J, et al. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300: 965-971.
http://dx.doi.org/10.1016/S0006-291X(02)02953-4
Wolfman NM, McPherron AC, Pappano WN, Davies MV, et al. (2003). Activation of latent myostatin by the BMP-1/ tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. U. S. A. 100: 15842-15846.
http://dx.doi.org/10.1073/pnas.2534946100
PMid:14671324 PMCid:307655
Zhang D, Liu M, Ding F and Gu X (2006). Expression of myostatin RNA transcript and protein in gastrocnemius muscle of rats after sciatic nerve resection. J. Muscle Res. Cell Motil. 27: 37-44.
http://dx.doi.org/10.1007/s10974-005-9050-5
PMid:16450055
“Association between male infertility and androgen receptor mutations in Brazilian patients”, vol. 9, pp. 128-133, 2010.
, Brinkmann AO and Trapman J (2000). Genetic analysis of androgen receptors in development and disease. Adv. Pharmacol. 47: 317-341.
http://dx.doi.org/10.1016/S1054-3589(08)60115-5
Domenice S, Costa EMF, Corrêa RV and Mendonça BB (2002). Molecular aspects of sexual determination and differentiation. [Aspectos moleculares da determinação e diferenciação sexual]. Arq. Bras. Endocrinol. Metab. 46: 433-443.
http://dx.doi.org/10.1590/S0004-27302002000400015
Eskenazi B, Wyrobek AJ, Sloter E, Kidd SA, et al. (2003). The association of age and semen quality in healthy men. Hum. Reprod. 18: 447-454.
http://dx.doi.org/10.1093/humrep/deg107
PMid:12571189
Ferlin A, Bartoloni L, Rizzo G, Roverato A, et al. (2004). Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility. Mol. Hum. Reprod. 10: 417-421.
http://dx.doi.org/10.1093/molehr/gah054
PMid:15044606
Fuentes-Mascorro G, Serrano H and Rosado A (2000). Sperm chromatin. Arch. Androl. 45: 215-225.
http://dx.doi.org/10.1080/01485010050193995
PMid:11111870
Genetics and Molecular Research 9 (1): 128-133 (2010) ©FUNPEC-RP www.funpecrp.com.br
Male infertility and androgen receptor mutations
Gottlieb B, Lombroso R, Beitel LK and Trifiro MA (2005). Molecular pathology of the androgen receptor in male (in)fertility. Reprod. Biomed. (Online) 10: 42-48.
http://dx.doi.org/10.1016/S1472-6483(10)60802-4
Holdcraft RW and Braun RE (2004). Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131: 459-467.
http://dx.doi.org/10.1242/dev.00957
PMid:14701682
Kunzle R, Mueller MD, Hanggi W, Birkhauser MH, et al. (2003). Semen quality of male smokers and nonsmokers in infertile couples. Fertil. Steril. 79: 287-291.
http://dx.doi.org/10.1016/S0015-0282(02)04664-2
Lim J, Ghadessy FJ, Abdullah AA, Pinsky L, et al. (2000). Human androgen receptor mutation disrupts ternary interactions between ligand, receptor domains, and the coactivator TIF2 (transcription intermediary factor 2). Mol. Endocrinol. 14: 1187-1197.
http://dx.doi.org/10.1210/me.14.8.1187
PMid:10935543
Lopes S, Jurisicova A, Sun JG and Casper RF (1998). Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum. Reprod. 13: 896-900.
http://dx.doi.org/10.1093/humrep/13.4.896
PMid:9619544
Lubahn DB, Joseph DR, Sullivan PM, Willard HF, et al. (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240: 327-330.
http://dx.doi.org/10.1126/science.3353727
PMid:3353727
Sailer BL, Jost LK and Evenson DP (1995). Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J. Androl. 16: 80-87.
PMid:7768756
Uehara S, Hashiyada M, Sato K, Sato Y, et al. (2001). Preferential X-chromosome inactivation in women with idiopathic recurrent pregnancy loss. Fertil. Steril. 76: 908-914.
http://dx.doi.org/10.1016/S0015-0282(01)02845-X
Yong EL, Loy CJ and Sim KS (2003). Androgen receptor gene and male infertility. Hum. Reprod. Update 9: 1-7.
http://dx.doi.org/10.1093/humupd/dmg003
PMid:12638777
“Involvement of CYP1A1, GST, 72TP53 polymorphisms in the pathogenesis of thyroid nodules”, vol. 9, pp. 2222-2229, 2010.
, Agundez JA (2004). Cytochrome P450 gene polymorphism and cancer. Curr. Drug Metab. 5: 211-224.
http://dx.doi.org/10.2174/1389200043335621
PMid:15180491
Almeida PS, Manoel WJ, Reis AA, Silva ER, et al. (2008). TP53 codon 72 polymorphism in adult soft tissue sarcomas. Genet. Mol. Res. 7: 1344-1352.
http://dx.doi.org/10.4238/vol7-4gmr497
PMid:19065769
Aral C, Çaglayan S, Ösizik G, Massoumilary S, et al. (2007). The association of P53 codon 72 polymorphism with thyroid cancer in Turkish patients. Marmara Med. J. 20: 1-5.
Boltze C, Roessner A, Landt O, Szibor R, et al. (2002). Homozygous proline at codon 72 of p53 as a potential risk factor favoring the development of undifferentiated thyroid carcinoma. Int. J. Oncol. 21: 1151-1154.
PMid:12370767
Bozina N, Bradamante V and Lovric M (2009). Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh. Hig. Rada Toksikol. 60: 217-242.
http://dx.doi.org/10.2478/10004-1254-60-2009-1885
PMid:19581216
Bufalo NE, Leite JL, Guilhen AC, Morari EC, et al. (2006). Smoking and susceptibility to thyroid cancer: an inverse association with CYP1A1 allelic variants. Endocr. Relat. Cancer 13: 1185-1193.
http://dx.doi.org/10.1677/ERC-06-0002
PMid:17158763
Chen RH, Chang CT, Wang TY, Huang WL, et al. (2008). p53 codon 72 proline/arginine polymorphism and autoimmune thyroid diseases. J. Clin. Lab. Anal. 22: 321-326.
http://dx.doi.org/10.1002/jcla.20249
PMid:18803266
Dean DS and Gharib H (2008). Epidemiology of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 22: 901-911.
http://dx.doi.org/10.1016/j.beem.2008.09.019
PMid:19041821
Gaspar J, Rodrigues S, Gil OM, Manita I, et al. (2004). Combined effects of glutathione S-transferase polymorphisms and thyroid cancer risk. Cancer Genet. Cytogenet. 151: 60-67.
http://dx.doi.org/10.1016/j.cancergencyto.2003.09.018
PMid:15120911
Gonçalves AJ, Carvalho LH, Serdeira K, Nakai MY, et al. (2007). Comparative analysis of the prevalence of the glutathione S-transferase (GST) system in malignant and benign thyroid tumor cells. São Paulo Med. J. 125: 289-291.
http://dx.doi.org/10.1590/S1516-31802007000500008
PMid:18094897
Hegedüs L (2004). Clinical practice. The thyroid nodule. N. Engl. J. Med. 351: 1764-1771.
http://dx.doi.org/10.1056/NEJMcp031436
PMid:15496625
Hegedüs L, Bonnema SJ and Bennedbaek FN (2003). Management of simple nodular goiter: current status and future perspectives. Endocr. Rev. 24: 102-132.
http://dx.doi.org/10.1210/er.2002-0016
PMid:12588812
Hernández A, Céspedes W, Xamena N, Surrallés J, et al. (2003). Glutathione S-transferase polymorphisms in thyroid cancer patients. Cancer Lett. 190: 37-44.
http://dx.doi.org/10.1016/S0304-3835(02)00580-3
Ho T, Zhao C, Zheng R, Liu Z, et al. (2006). Glutathione S-transferase polymorphisms and risk of differentiated thyroid carcinomas: a case-control analysis. Arch. Otolaryngol. Head Neck Surg. 132: 756-761.
http://dx.doi.org/10.1001/archotol.132.7.756
PMid:16847185
Lemos MC, Coutinho E, Gomes L, Carrilho F, et al. (2008). Combined GSTM1 and GSTT1 null genotypes are associated with a lower risk of papillary thyroid cancer. J. Endocrinol. Invest. 31: 542-545.
PMid:18591888
Masson LF, Sharp L, Cotton SC and Little J (2005). Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: A HuGE review. Am. J. Epidemiol. 161: 901-915.
http://dx.doi.org/10.1093/aje/kwi121
PMid:15870154
Mazzaferri EL (2006). Managing small thyroid cancer. JAMA 295: 2179-2182.
http://dx.doi.org/10.1007/b136179
Morari EC, Leite JL, Granja F, da Assumpcao LV, et al. (2002). The null genotype of glutathione s-transferase M1 and T1 locus increases the risk for thyroid cancer. Cancer Epidemiol. Biomarkers Prev. 11: 1485-1488.
PMid:12433731
Nebert DW, McKinnon RA and Puga A (1996). Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 15: 273-280.
http://dx.doi.org/10.1089/dna.1996.15.273
PMid:8639263
Rossini A, Rapozo DC, Amorim LM, Macedo JM, et al. (2002). Frequencies of GSTM1, GSTT1, and GSTP1 polymorphisms in a Brazilian population. Genet. Mol. Res. 1: 233-240.
PMid:14963830
Siraj AK, Ibrahim M, Al-Rasheed M, Abubaker J, et al. (2008). Polymorphisms of selected xenobiotic genes contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. B.M.C. Med. Genet. 9: 61.
http://dx.doi.org/10.1186/1471-2350-9-61
PMid:18601742 PMCid:2492854
Song N, Tan W, Xing D and Lin D (2001). CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis 22: 11-16.
http://dx.doi.org/10.1093/carcin/22.1.11
PMid:11159735
Sourvinos G, Rizos E and Spandidos DA (2001). p53 Codon 72 polymorphism is linked to the development and not the progression of benign and malignant laryngeal tumours. Oral Oncol. 37: 572-578.
http://dx.doi.org/10.1016/S1368-8375(00)00139-1
Stankov K, Landi S, Gioia-Patricola L, Bonora E, et al. (2006). GSTT1 and M1 polymorphisms in Hürthle thyroid cancer patients. Cancer Lett. 240: 76-82.
http://dx.doi.org/10.1016/j.canlet.2005.08.017
PMid:16427734
Sweeney C, Farrow DC, Schwartz SM, Eaton DL, et al. (2000). Glutathione S-transferase M1, T1, and P1 polymorphisms as risk factors for renal cell carcinoma: a case-control study. Cancer Epidemiol. Biomarkers Prev. 9: 449-454.
PMid:10794492