Publications
Found 4 results
Filters: Author is C.T. Guimarães [Clear All Filters]
“Selection of sorghum hybrids grown under aluminum saturation”, vol. 13, pp. 5964-5973, 2014.
, “Genetic and molecular mechanisms of aluminum tolerance in plants”, vol. 11. pp. 1949-1957, 2012.
,
Ciotta MN, Bayer C, Ernani PR, Fontoura SMV, et al. (2002). Acidificação de um latossolo sob plantio direto. Rev. Bras. Cienc. Solo 26: 1055-1064.
Collins NC, Shirley NJ, Saeed M, Pallotta M, et al. (2008). An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179: 669-682.
http://dx.doi.org/10.1534/genetics.107.083451
PMid:18493079 PMCid:2390642
Courville P, Chaloupka R and Cellier MF (2006). Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem. Cell Biol. 84: 960-978.
http://dx.doi.org/10.1139/o06-193
PMid:17215883
Dale JE and Sutcliffe JF (1986). Water Relations of Plant Cells. In: Plant Physiology, a Treatise (Steward FC, Sutcliffe JF and Dale JE, eds.). Vol. 9: Water and Solutes in Plants. Academic, Orlando, 1-48.
Degenhardt J, Larsen PB, Howell SH and Kochian LV (1998). Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol. 117: 19-27.
http://dx.doi.org/10.1104/pp.117.1.19
PMid:9576770 PMCid:35003
Delhaize E and Ryan PR (1995). Aluminum toxicity and tolerance in plants. Plant Physiol. 107: 315-321.
PMid:12228360 PMCid:157131
Delhaize E, Craig S, Beaton CD, Bennet RJ, et al. (1993). Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and Distribution of Aluminum in Root Apices). Plant Physiol. 103: 685-693.
PMid:12231972 PMCid:159037
Foy CD (1988). Plant adaptation to acid aluminum-toxic soils. Commun. Soil Sci. Plant Anal. 19: 959-987.
http://dx.doi.org/10.1080/00103628809367988
Fujii M, Yokosho K, Yamaji N, Saisho D, et al. (2012). Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 3: 713.
http://dx.doi.org/10.1038/ncomms1726
PMid:22395604 PMCid:3316887
Furukawa J, Yamaji N, Wang H, Mitani N, et al. (2007). An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48: 1081-1091.
http://dx.doi.org/10.1093/pcp/pcm091
PMid:17634181
Gruber BD, Ryan PR, Richardson AE, Tyerman SD, et al. (2010). HvALMT1 from barley is involved in the transport of organic anions. J. Exp. Bot. 61: 1455-1467.
http://dx.doi.org/10.1093/jxb/erq023
PMid:20176888 PMCid:2837267
Hoekenga OA, Maron LG, Piñeros MA, Cancado GM, et al. (2006). AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 103: 9738-9743.
http://dx.doi.org/10.1073/pnas.0602868103
PMid:16740662 PMCid:1480476
Huang CF, Yamaji N, Mitani N, Yano M, et al. (2009). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21: 655-667.
http://dx.doi.org/10.1105/tpc.108.064543
PMid:19244140 PMCid:2660611
Huang CF, Yamaji N, Chen Z and Ma JF (2012). A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 69: 857-867.
http://dx.doi.org/10.1111/j.1365-313X.2011.04837.x
PMid:22035218
Iuchi S, Koyama H, Iuchi A, Kobayashi Y, et al. (2007). Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc. Natl. Acad. Sci. U. S. A. 104: 9900-9905.
http://dx.doi.org/10.1073/pnas.0700117104
PMid:17535918 PMCid:1887543
Kidd PS, Llugany M, Poschenrieder C, Gunse B, et al. (2001). The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52: 1339- 1352.
http://dx.doi.org/10.1093/jexbot/52.359.1339
PMid:11432953
Kinraide TB, Ryan PR and Kochian LV (1992). Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 99: 1461-1468.
http://dx.doi.org/10.1104/pp.99.4.1461
PMid:16669059 PMCid:1080648
Kochian LV (1995). Cellular mechanism of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. 46: 237-260.
http://dx.doi.org/10.1146/annurev.pp.46.060195.001321
Kochian LV, Hoekenga OA and Piñeros MA (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55: 459-493.
http://dx.doi.org/10.1146/annurev.arplant.55.031903.141655
PMid:15377228
Larsen PB, Geisler MJ, Jones CA, Williams KM, et al. (2005). ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 41: 353-363.
http://dx.doi.org/10.1111/j.1365-313X.2004.02306.x
PMid:15659095
Larsen PB, Cancel J, Rounds M and Ochoa V (2007). Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225: 1447-1458.
http://dx.doi.org/10.1007/s00425-006-0452-4
PMid:17171374
Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, et al. (2006). The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 142: 1294-1303.
http://dx.doi.org/10.1104/pp.106.085233
PMid:17028155 PMCid:1630743
Ligaba A, Maron L, Shaff J, Kochian L, et al. (2012). Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ. 35: 1185-1200.
http://dx.doi.org/10.1111/j.1365-3040.2011.02479.x
PMid:22211473
Liu J, Magalhaes JV, Shaff J and Kochian LV (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 57: 389-399.
http://dx.doi.org/10.1111/j.1365-313X.2008.03696.x
PMid:18826429
Luo M-C and Dvorák J (1996). Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91: 31-35.
http://dx.doi.org/10.1007/BF00035273
Ma HX, Bai GH, Carver BF and Zhou LL (2005). Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor. Appl. Genet. 112: 51-57.
http://dx.doi.org/10.1007/s00122-005-0101-5
PMid:16189660
Ma JF, Ryan PR and Delhaize E (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273-278.
http://dx.doi.org/10.1016/S1360-1385(01)01961-6
Ma JF, Shen R, Nagao S and Tanimoto E (2004a). Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol. 45: 583-589.
http://dx.doi.org/10.1093/pcp/pch060
PMid:15169940
Ma JF, Nagao S, Sato K, Ito H, et al. (2004b). Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J. Exp. Bot. 55: 1335-1341.
http://dx.doi.org/10.1093/jxb/erh152
PMid:15155781
Ma Z and Miyasaka SC (1998). Oxalate exudation by taro in response to Al. Plant Physiol. 118: 861-865.
http://dx.doi.org/10.1104/pp.118.3.861
PMid:9808730 PMCid:34796
Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, et al. (2004). Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167: 1905-1914.
http://dx.doi.org/10.1534/genetics.103.023580
PMid:15342528 PMCid:1471010
Magalhaes JV, Liu J, Guimarães CT, Lana UG, et al. (2007). A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 39: 1156-1161.
http://dx.doi.org/10.1038/ng2074
PMid:17721535
Maron LG, Piñeros MA, Guimarães CT, Magalhaes JV, et al. (2010). Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 61: 728-740.
http://dx.doi.org/10.1111/j.1365-313X.2009.04103.x
PMid:20003133
Miyasaka SC and Hawes MC (2001). Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol. 125: 1978-1987.
http://dx.doi.org/10.1104/pp.125.4.1978
PMid:11299377 PMCid:88853
Navakode S, Weidner A, Lohwasser U, Röder MS, et al. (2009). Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166: 283-290.
http://dx.doi.org/10.1007/s10681-008-9845-8
Ninamango-Cárdenas FE, Guimarães CT, Martins PR, Parentoni SN, et al. (2003). Mapping QTLs for aluminum tolerance in maize. Euphytica 130: 223-232.
http://dx.doi.org/10.1023/A:1022867416513
Ofei-Manu P, Wagatsuma T, Ishikawa S and Tawaraya K (2001). The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Sci. Plant Nutr. 47: 359-375.
http://dx.doi.org/10.1080/00380768.2001.10408399
Pellet DM, Grunes DL and Kochian LV (1995). Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196: 788-795.
http://dx.doi.org/10.1007/BF01106775
Piñeros MA, Magalhaes JV, Carvalho Alves VM and Kochian LV (2002). The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129: 1194-1206.
http://dx.doi.org/10.1104/pp.002295
PMid:12114573 PMCid:166513
Piñeros MA, Shaff JE, Manslank HS, Alves VM, et al. (2005). Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 137: 231-241.
http://dx.doi.org/10.1104/pp.104.047357
PMid:15591441 PMCid:548854
Piñeros MA, Cancado GM, Maron LG, Lyi SM, et al. (2008). Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmAL. Plant J. 53: 352-367.
http://dx.doi.org/10.1111/j.1365-313X.2007.03344.x
PMid:18069943
Raman H, Zhang K, Cakir M, Appels R, et al. (2005). Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48: 781-791.
http://dx.doi.org/10.1139/g05-054
PMid:16391684
Ried CR and Anderson JA (1996). Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci. 36: 905-909.
http://dx.doi.org/10.2135/cropsci1996.0011183X0036000400015x
Ryan PR, Raman H, Gupta S, Horst WJ, et al. (2009). A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 149: 340-351.
http://dx.doi.org/10.1104/pp.108.129155
PMid:19005085 PMCid:2613747
Ryan PR, Raman H, Gupta S, Sasaki T, et al. (2010). The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J. 64: 446-455.
http://dx.doi.org/10.1111/j.1365-313X.2010.04338.x
PMid:20804458
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, et al. (2004). A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37: 645-653.
http://dx.doi.org/10.1111/j.1365-313X.2003.01991.x
PMid:14871306
Sasaki T, Ryan PR, Delhaize E, Hebb DM, et al. (2006). Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol. 47: 1343-1354.
http://dx.doi.org/10.1093/pcp/pcl002
PMid:16928694
Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, et al. (2009). STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 150: 281-294.
http://dx.doi.org/10.1104/pp.108.134700
PMid:19321711 PMCid:2675709
Sibov ST, Gaspar M, Silva MJ, Ottoboni LMM, et al. (1999). Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome 42: 475-482.
http://dx.doi.org/10.1139/g98-146
Suhayda CG and Haug A (1985). Citrate chelation as a potential mechanism against aluminum toxicity in cells: the role of calmodulin. Can. J. Biochem. Cell Biol. 63: 1167-1175.
http://dx.doi.org/10.1139/o85-145
Taylor GJ (1988). The physiology of aluminum tolerance. Commun. Soil Sci. Plant Anal. 19: 7-12.
Tsutsui T, Yamaji N and Feng MJ (2011). Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 156: 925-931.
http://dx.doi.org/10.1104/pp.111.175802
PMid:21502187 PMCid:3177286
von Korff M, Radovic S, Choumane W, Stamati K, et al. (2009). Asymmetric allele-specific expression in relation to developmental variation and drought stress in barley hybrids. Plant J. 59: 14-26.
http://dx.doi.org/10.1111/j.1365-313X.2009.03848.x
PMid:19309461
Xia J, Yamaji N, Kasai T and Ma JF (2010). Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. U. S. A. 107: 18381-18385.
http://dx.doi.org/10.1073/pnas.1004949107
PMid:20937890 PMCid:2972927
Yamaji N, Huang CF, Nagao S, Yano M, et al. (2009). A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21: 3339-3349.
http://dx.doi.org/10.1105/tpc.109.070771
PMid:19880795 PMCid:2782276
Yang ZM, Sivaguru M, Horst WJ and Matsumoto H (2000). Aluminum tolerance in achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol. Plant. 110: 72-77.
http://dx.doi.org/10.1034/j.1399-3054.2000.110110.x
Yokosho K, Yamaji N and Ma JF (2010). Isolation and characterization of two MATE genes in rye. Funct. Plant Biol. 37: 296-303.
http://dx.doi.org/10.1071/FP09265
Yokosho K, Yamaji N and Ma JF (2011). An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J. 68: 1061-1069.
http://dx.doi.org/10.1111/j.1365-313X.2011.04757.x
PMid:21880027
“Distinction between plant samples according to allele dosage by semiquantitative polymerase chain reaction”, vol. 8, pp. 319-327, 2009.
, “Mapping of quantitative trait locus associated with maize tolerance to high seed drying temperature”, vol. 7, pp. 1319-1326, 2008.
,