Publications

Found 16 results
Filters: Author is R. Rodrigues  [Clear All Filters]
2016
P. S. S. Leite, Rodrigues, R., Silva, R. N. O., Pimenta, S., Medeiros, A. M., Bento, C. S., Gonçalves, L. S. A., Leite, P. S. S., Rodrigues, R., Silva, R. N. O., Pimenta, S., Medeiros, A. M., Bento, C. S., and Gonçalves, L. S. A., Molecular and agronomic analysis of intraspecific variability in Capsicum baccatum var. pendulum accessions, vol. 15, p. -, 2016.
P. S. S. Leite, Rodrigues, R., Silva, R. N. O., Pimenta, S., Medeiros, A. M., Bento, C. S., Gonçalves, L. S. A., Leite, P. S. S., Rodrigues, R., Silva, R. N. O., Pimenta, S., Medeiros, A. M., Bento, C. S., and Gonçalves, L. S. A., Molecular and agronomic analysis of intraspecific variability in Capsicum baccatum var. pendulum accessions, vol. 15, p. -, 2016.
A. L. Campos, Marostega, T. N., Cabral, N. S. S., Araújo, K. L., Serafim, M. E., Seabra-Júnior, S., Sudré, C. P., Rodrigues, R., Neves, L. G., Campos, A. L., Marostega, T. N., Cabral, N. S. S., Araújo, K. L., Serafim, M. E., Seabra-Júnior, S., Sudré, C. P., Rodrigues, R., and Neves, L. G., Morphoagronomic and molecular profiling of Capsicum spp from southwest Mato Grosso, Brazil, vol. 15, p. -, 2016.
A. L. Campos, Marostega, T. N., Cabral, N. S. S., Araújo, K. L., Serafim, M. E., Seabra-Júnior, S., Sudré, C. P., Rodrigues, R., Neves, L. G., Campos, A. L., Marostega, T. N., Cabral, N. S. S., Araújo, K. L., Serafim, M. E., Seabra-Júnior, S., Sudré, C. P., Rodrigues, R., and Neves, L. G., Morphoagronomic and molecular profiling of Capsicum spp from southwest Mato Grosso, Brazil, vol. 15, p. -, 2016.
G. C. V. Bard, Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., Gomes, V. M., Bard, G. C. V., Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., and Gomes, V. M., Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS This study forms part of G.C.V. Bard’s DSc degree thesis and was carried out at Universidade Estadual do Norte Fluminense. Research supported by CNPq, FAPERJ, and CAPES through the CAPES/Toxicology project. We wish to thank L.C.D. Souza and V.M. Kokis for technical assistance. REFERENCES Aerts AM, François IE, Meert EM, Li QT, et al (2007). The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13: 243-247. http://dx.doi.org/10.1159/000104753 Benko-Iseppon AM, Galdino SL, Calsa TJrKidoEA, et al (2010). Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci. 11: 181-188. http://dx.doi.org/10.2174/138920310791112075 Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J, et al (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69: 55-59. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04174.x Cameron KD, Teece MA, Smart LB, et al (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. http://dx.doi.org/10.1104/pp.105.069724 Carvalho AO, Teodoro CES, Cunha MD, Okorokova-Façanha AL, et al (2004). Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol. Plant. 122: 328-336. http://dx.doi.org/10.1111/j.1399-3054.2004.00413.x Carvalho AdeO, Gomes VM, et al (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144-1153. http://dx.doi.org/10.1016/j.peptides.2007.03.004 Filho RL, Romero RS, et al (2009). Sensibilidade de Xanthamonas vesicatoria a antibióticos para desenvolvimento de um meio semi-seletivo. Rer. Trop. –. Cienc. Agr. Biol. 3: 28-39. Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, et al (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 142: 233-246. http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x Domínguez E, Heredia-Guerrero JA, Heredia A, et al (2015). Plant cutin genesis: unanswered questions. Trends Plant Sci. 20: 551-558. http://dx.doi.org/10.1016/j.tplants.2015.05.009 Dubreil L, Méliande S, Chiron H, Compoint JP, et al (1998). Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem. 75: 222-229. http://dx.doi.org/10.1094/CCHEM.1998.75.2.222 Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV, et al (2005). Diversity of wheat anti-microbial peptides. Peptides 26: 2064-2073. http://dx.doi.org/10.1016/j.peptides.2005.03.007 Gonçalves LS, Rodrigues R, Diz MS, Robaina RR, et al (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genet. Mol. Res. 12: 1411-1420. http://dx.doi.org/10.4238/2013.April.26.3 Huang MD, Chen TL, Huang AH, et al (2013). Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol. 163: 1218-1229. http://dx.doi.org/10.1104/pp.113.225706 Huang YH, Colgrave ML, Daly NL, Keleshian A, et al (2009). The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284: 20699-20707. http://dx.doi.org/10.1074/jbc.M109.003384 Jensen WA (1962). Botanical histochemistry. In: Principles and practice (Freeman WH & Co, eds.) San Francisco, USA, 1-408. Kader JC, et al (1975). Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44. http://dx.doi.org/10.1016/0005-2760(75)90042-9 Lei L, Chen L, Shi X, Li Y, et al (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 164: 1045-1058. http://dx.doi.org/10.1104/pp.113.232637 Liu F, Zhang X, Lu C, Zeng X, et al (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 66: 5663-5681. http://dx.doi.org/10.1093/jxb/erv313 Maldonado AM, Doerner P, Dixon RA, Lamb CJ, et al (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403. http://dx.doi.org/10.1038/nature00962 Matiello JB (2005). Cultura de café no Brasil, Novo Manual de recomendações. Rio de Janeiro: MAPA/Procafé; Fundação Procafé, Varginha. Mello EO, Ribeiro SF, Carvalho AO, Santos IS, et al (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62: 1209-1217. http://dx.doi.org/10.1007/s00284-010-9847-3 Moulin MM, Rodrigues R, Ribeiro SF, Gonçalves LS, et al (2014). Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 13: 9229-9243. http://dx.doi.org/10.4238/2014.November.7.10 Muñoz A, Marcos JF, Read ND, et al (2012). Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol. 85: 89-106. http://dx.doi.org/10.1111/j.1365-2958.2012.08091.x Pagnussat LA, Lombardo C, Regente M, Pinedo M, et al (2009). Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 166: 797-806. http://dx.doi.org/10.1016/j.jplph.2008.11.005 Regente MC, Giudici AM, Villalaín J, de la Canal L, et al (2005). The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40: 183-189. http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x Ribeiro SF, Silva MS, Da Cunha M, Carvalho AO, et al (2012). Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek 101: 657-670. http://dx.doi.org/10.1007/s10482-011-9683-x Santos IS, Da Cunha M, Machado OLT, Gomes VM, et al (2004). A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 167: 1203-1210. http://dx.doi.org/10.1016/j.plantsci.2004.04.021 Schägger H, von Jagow G, et al (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2 Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7 Tamm L, Thürig B, Fliessbach A, Goltlieb AE, et al (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagening. J. Life Sci. 58: 131-137. http://dx.doi.org/10.1016/j.njas.2011.01.001 Taveira GB, Mathias LS, da Motta OV, Machado OL, et al (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39. http://dx.doi.org/10.1002/bip.22351 Teixeira V, Feio MJ, Bastos M, et al (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177. http://dx.doi.org/10.1016/j.plipres.2011.12.005 Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, et al (1992). In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 100: 1055-1058. http://dx.doi.org/10.1104/pp.100.2.1055 Thevissen K, Terras FR, Broekaert WF, et al (1999). Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. Tian A, Jiang J, Cao J, et al (2013). Functional analysis of a novel male fertility lipid transfer protein gene in Brassica campestris ssp. chinensis. Plant Mol. Biol. Report. 31: 775-782. http://dx.doi.org/10.1007/s11105-012-0552-1 Tsuboi S, Osafune T, Tsugeki R, Nishimura M, et al (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500-508. Wang SY, Wu JH, Ng TB, Ye XY, et al (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810: 375-383. http://dx.doi.org/10.1016/j.bbagen.2010.12.002 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2013). An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim. Biophys. Acta 1830: 3509-3516. http://dx.doi.org/10.1016/j.bbagen.2013.03.007 Zottich UP (2012). Peptídeos de sementes de Coffea canephora: purificação e caracterização das atividades antimicrobianas e inseticidas. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes.
G. C. V. Bard, Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., Gomes, V. M., Bard, G. C. V., Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., and Gomes, V. M., Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS This study forms part of G.C.V. Bard’s DSc degree thesis and was carried out at Universidade Estadual do Norte Fluminense. Research supported by CNPq, FAPERJ, and CAPES through the CAPES/Toxicology project. We wish to thank L.C.D. Souza and V.M. Kokis for technical assistance. REFERENCES Aerts AM, François IE, Meert EM, Li QT, et al (2007). The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13: 243-247. http://dx.doi.org/10.1159/000104753 Benko-Iseppon AM, Galdino SL, Calsa TJrKidoEA, et al (2010). Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci. 11: 181-188. http://dx.doi.org/10.2174/138920310791112075 Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J, et al (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69: 55-59. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04174.x Cameron KD, Teece MA, Smart LB, et al (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. http://dx.doi.org/10.1104/pp.105.069724 Carvalho AO, Teodoro CES, Cunha MD, Okorokova-Façanha AL, et al (2004). Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol. Plant. 122: 328-336. http://dx.doi.org/10.1111/j.1399-3054.2004.00413.x Carvalho AdeO, Gomes VM, et al (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144-1153. http://dx.doi.org/10.1016/j.peptides.2007.03.004 Filho RL, Romero RS, et al (2009). Sensibilidade de Xanthamonas vesicatoria a antibióticos para desenvolvimento de um meio semi-seletivo. Rer. Trop. –. Cienc. Agr. Biol. 3: 28-39. Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, et al (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 142: 233-246. http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x Domínguez E, Heredia-Guerrero JA, Heredia A, et al (2015). Plant cutin genesis: unanswered questions. Trends Plant Sci. 20: 551-558. http://dx.doi.org/10.1016/j.tplants.2015.05.009 Dubreil L, Méliande S, Chiron H, Compoint JP, et al (1998). Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem. 75: 222-229. http://dx.doi.org/10.1094/CCHEM.1998.75.2.222 Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV, et al (2005). Diversity of wheat anti-microbial peptides. Peptides 26: 2064-2073. http://dx.doi.org/10.1016/j.peptides.2005.03.007 Gonçalves LS, Rodrigues R, Diz MS, Robaina RR, et al (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genet. Mol. Res. 12: 1411-1420. http://dx.doi.org/10.4238/2013.April.26.3 Huang MD, Chen TL, Huang AH, et al (2013). Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol. 163: 1218-1229. http://dx.doi.org/10.1104/pp.113.225706 Huang YH, Colgrave ML, Daly NL, Keleshian A, et al (2009). The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284: 20699-20707. http://dx.doi.org/10.1074/jbc.M109.003384 Jensen WA (1962). Botanical histochemistry. In: Principles and practice (Freeman WH & Co, eds.) San Francisco, USA, 1-408. Kader JC, et al (1975). Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44. http://dx.doi.org/10.1016/0005-2760(75)90042-9 Lei L, Chen L, Shi X, Li Y, et al (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 164: 1045-1058. http://dx.doi.org/10.1104/pp.113.232637 Liu F, Zhang X, Lu C, Zeng X, et al (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 66: 5663-5681. http://dx.doi.org/10.1093/jxb/erv313 Maldonado AM, Doerner P, Dixon RA, Lamb CJ, et al (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403. http://dx.doi.org/10.1038/nature00962 Matiello JB (2005). Cultura de café no Brasil, Novo Manual de recomendações. Rio de Janeiro: MAPA/Procafé; Fundação Procafé, Varginha. Mello EO, Ribeiro SF, Carvalho AO, Santos IS, et al (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62: 1209-1217. http://dx.doi.org/10.1007/s00284-010-9847-3 Moulin MM, Rodrigues R, Ribeiro SF, Gonçalves LS, et al (2014). Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 13: 9229-9243. http://dx.doi.org/10.4238/2014.November.7.10 Muñoz A, Marcos JF, Read ND, et al (2012). Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol. 85: 89-106. http://dx.doi.org/10.1111/j.1365-2958.2012.08091.x Pagnussat LA, Lombardo C, Regente M, Pinedo M, et al (2009). Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 166: 797-806. http://dx.doi.org/10.1016/j.jplph.2008.11.005 Regente MC, Giudici AM, Villalaín J, de la Canal L, et al (2005). The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40: 183-189. http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x Ribeiro SF, Silva MS, Da Cunha M, Carvalho AO, et al (2012). Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek 101: 657-670. http://dx.doi.org/10.1007/s10482-011-9683-x Santos IS, Da Cunha M, Machado OLT, Gomes VM, et al (2004). A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 167: 1203-1210. http://dx.doi.org/10.1016/j.plantsci.2004.04.021 Schägger H, von Jagow G, et al (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2 Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7 Tamm L, Thürig B, Fliessbach A, Goltlieb AE, et al (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagening. J. Life Sci. 58: 131-137. http://dx.doi.org/10.1016/j.njas.2011.01.001 Taveira GB, Mathias LS, da Motta OV, Machado OL, et al (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39. http://dx.doi.org/10.1002/bip.22351 Teixeira V, Feio MJ, Bastos M, et al (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177. http://dx.doi.org/10.1016/j.plipres.2011.12.005 Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, et al (1992). In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 100: 1055-1058. http://dx.doi.org/10.1104/pp.100.2.1055 Thevissen K, Terras FR, Broekaert WF, et al (1999). Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. Tian A, Jiang J, Cao J, et al (2013). Functional analysis of a novel male fertility lipid transfer protein gene in Brassica campestris ssp. chinensis. Plant Mol. Biol. Report. 31: 775-782. http://dx.doi.org/10.1007/s11105-012-0552-1 Tsuboi S, Osafune T, Tsugeki R, Nishimura M, et al (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500-508. Wang SY, Wu JH, Ng TB, Ye XY, et al (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810: 375-383. http://dx.doi.org/10.1016/j.bbagen.2010.12.002 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2013). An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim. Biophys. Acta 1830: 3509-3516. http://dx.doi.org/10.1016/j.bbagen.2013.03.007 Zottich UP (2012). Peptídeos de sementes de Coffea canephora: purificação e caracterização das atividades antimicrobianas e inseticidas. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes.
2013
G. B. Dias, Gomes, V. M., Moraes, T. M. S., Zottich, U. P., Rabelo, G. R., Carvalho, A. O., Moulin, M., Gonçalves, L. S. A., Rodrigues, R., and Da Cunha, M., Characterization of Capsicum species using anatomical and molecular data, vol. 12, pp. 6488-6501, 2013.
C. S. Bento, Rodrigues, R., Gonçalves, L. S. A., Oliveira, H. S., Santos, M. H., Pontes, M. C., and Sudré, C. P., Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum, vol. 12, pp. 1074-1082, 2013.
Allard RW (1971). Princípios do Melhoramento Genético das Plantas. Edgard Blucher, Rio de Janeiro.   Ávila AC, Inoue-Nagata AK, Costa H, Boiteux LS, et al. (2004). Ocorrência de viroses em tomate e pimentão na região serrana do Estado do Espírito Santo. Hortic. Bras. 22: 655-658. http://dx.doi.org/10.1590/S0102-05362004000300032   Bento CS, Rodrigues R, Zerbini F Jr and Sudré CP (2009). Sources of resistance against the Pepper yellow mosaic virus in chili pepper. Hortic. Bras. 27: 196-201. http://dx.doi.org/10.1590/S0102-05362009000200013   Bezerra JEA Jr, Maluf WR, Figueira AR and Barguil BM (2006). Herança da resistência ao Watermelon mosaic virus em melancia (Citrullus lanatus L.). Fitopatol. Bras. 3: 302-305.   Boiteux LS and Pessoa HBSV (1994). Additional sources of resistance to an isolate PVYm in Capsicum germplasm. Fitopatol. Bras. 19: 291.   Campbell CL and Madden LV (1990). Introduction to Plant Disease Epidemiology. John Wiley & Sons, New York.   Caranta C, Thabuis A and Palloix A (1999). Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42: 1111-1116. PMid:10659777   Carmo MGF, Zerbini FM Jr and Maffia LA (2006). Principais doenças da cultura da pimenta. Informe Agropec. 27: 87-98.   Cruz CD (2006). Programa Genes Versão Windows. Aplicativo Computacional em Genética e Estatística. UFV, Viçosa.   Cruz CD and Carneiro PCS (2003). Modelos Biométricos Aplicados ao Melhoramento Genético. UFV, Viçosa.   Fehr WR (1987). Principles of Cultivar Development: Theory and Technique. MacMillan, New York. PMCid:175030   Ferrão LFV, Cecon PR, Finger FL, Silva FF, et al. (2011). Divergência genética entre genótipos de pimenta com base em caracteres morfo-agrônomicos. Hortic. Bras. 29: 354-358. http://dx.doi.org/10.1590/S0102-05362011000300016   Ferreira CF, Pereira MG, Santos AS, Rodrigues R, et al. (2003). Resistance to common bacterial blight in Phaseolus vulgaris L. recombinant inbred lines under natural infection of Xanthomonas axonopodis pv. phaseoli. Euphytica 134: 43-46. http://dx.doi.org/10.1023/A:1026131626592   Ferreira CF, Pereira MG, Santos AS, Rodrigues R, et al. (2004). Xanthomonas axonopodis pv. phaseoli resistance in common bean (Phaseolus vulgaris L.) recombinant inbred lines. Crop Breed. Appl. Biotechnol. 4: 100-104.   Gioria R, Braga RS, Krause-Sakate R, Roullier C, et al. (2009). Breakdown of resistance in sweet pepper against Pepper yellow mosaic virus in Brazil. Sci. Agric. 66: 267-269. http://dx.doi.org/10.1590/S0103-90162009000200017   Gonçalves LSA, Rodrigues R, Bento CS, Robaina RR, et al. (2011). Herança de caracteres relacionados à produção de frutos em Capsicum baccatum var. pendulum com base em análise dialélica de Hayman. Ver. Ciênc. Agron. 42: 662-669.   Grub RC, Blauth JR, Arnedo Andrés MS, Caranta C, et al. (2000). Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor. Appl. Genet. 101: 852-859. http://dx.doi.org/10.1007/s001220051552   Inoue-Nagata AK, Fonseca ME, Resende RO, Boiteux LS, et al. (2002). Pepper yellow mosaic virus, a new potyvirus in sweetpepper, Capsicum annuum. Arch. Virol. 147: 849-855. http://dx.doi.org/10.1007/s007050200032 PMid:12038694   Janzac B, Fabre MF, Palloix A and Moury B (2009). Blackwell Publishing Ltd. Phenotype and spectrum of action of the Pvr4 resistance in pepper against potyviruses, and selection for virulent variants. Plant Pathol. 58: 443-449. http://dx.doi.org/10.1111/j.1365-3059.2008.01992.x   Juhász ACP, Silva DJH, Zerbini FM Jr, Carneiro PCS, et al. (2008). Base genética da resistência de um acesso de tomate silvestre ao mosaico-amarelo do pimentão. Pesq. Agropec. Bras. 43: 713-720. http://dx.doi.org/10.1590/S0100-204X2008000600007   Lobo VLS, Giordano LB and Lopes CA (2005). Herança da resistência à mancha-bacteriana em tomateiro. Fitopatol. Bras. 30: 343-349. http://dx.doi.org/10.1590/S0100-41582005000400002   Maciel-Zambolim E, Costa H, Capucho AS, Avia AC, et al. (2004). Surto epidemiológico do vírus do mosaico amarelo do pimentão em tomateiro na região serrana do Espírito Santo. Fitopatol. Bras. 29: 325-327. http://dx.doi.org/10.1590/S0100-41582004000300017   Mather K and Jinks LL (1984). Introdução à Genética Biométrica. Sociedade Brasileira de Genética, Ribeirão Preto.   Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, et al. (2007). The evolution of chili peppers (Capsicum - Solanaceae): a cytogenetic perspective. Acta Hortic. 745: 137-170.   Moura MCCL, Gonçalves LSA, Sudré CP, Rodrigues R, et al. (2010). Algoritmo de Gower na estimativa da divergência genética em germoplasma de pimenta. Hortic. Bras. 28: 155-161. http://dx.doi.org/10.1590/S0102-05362010000200003   Moura MF, Mituti T, Marubayashi JM, Gioria R, et al. (2011). A classification of Pepper yellow mosaic virus isolates into pathotypes. Eur. J. Plant Pathol. 131: 549-552. http://dx.doi.org/10.1007/s10658-011-9836-9   Nascimento IR, Valle LAC, Maluf WR, Gonçalves LD, et al. (2007). Reação de híbridos, linhagens e progênies de pimentão à requeima causada por Phytophthora capsici e ao mosaico amarelo causado por Pepper yellow mosaic virus (PepYMV). Ciênc. Agrotec. 31: 121-128. http://dx.doi.org/10.1590/S1413-70542007000100018   Pickersgill B (1997). Genetic resources and breeding of Capsicum spp. Euphytica 96: 129-133. http://dx.doi.org/10.1023/A:1002913228101   Ramalho MAP, Santos JB and Zimmermann MJ (1993). Genética Quantitativa em Plantas Autógamas: Aplicações ao Melhoramento do Feijoeiro. UFG, Goiânia. PMCid:1016548   Rêgo ER, Rêgo MM, Cruz CD, Finger FL, et al. (2011). Phenotypic diversity, correlation and importance of variables for fruit quality and yield traits in Brazilian peppers (Capsicum baccatum). Genet. Res. Crop. Evol. 58: 909-918. http://dx.doi.org/10.1007/s10722-010-9628-7   Riva EM, Rodrigues R, Pereira MG, Sudré CP, et al. (2004). Inheritance of bacterial spot disease in Capsicum annuum L. Crop Breed. Appl. Biotechnol. 4: 490-494.   Sudré CP, Goncalves LS, Rodrigues R, do Amaral Junior AT, et al. (2010). Genetic variability in domesticated Capsicum spp as assessed by morphological and agronomic data in mixed statistical analysis. Genet. Mol. Res. 9: 283-294. http://dx.doi.org/10.4238/vol9-1gmr698 PMid:20198584   Truta AAC, Souza ARR, Nascimento AVS, Pereira RC, et al. (2004). Identidade e propriedades de isolados de Potyvirus de Capsicum spp. Fitopatol. Bras. 29: 160-168. http://dx.doi.org/10.1590/S0100-41582004000200007   Xu Y, Kang D, Shi Z, Shen H, et al. (2004). Inheritance of resistance to zucchini yellow mosaic virus and watermelon mosaic virus in watermelon. J. Hered. 95: 498-502. http://dx.doi.org/10.1093/jhered/esh076 PMid:15475395   Zimmer AR, Leonardi B, Miron D, Schapoval E, et al. (2012). Antioxidant and anti-inflammatory properties of Capsicum baccatum: from traditional use to scientific approach. J. Ethnopharmacol. 139: 228-233. http://dx.doi.org/10.1016/j.jep.2011.11.005 PMid:22100562
L. S. A. Gonçalves, Rodrigues, R., Diz, M. S. S., Robaina, R. R., Júnior, A. Tdo Amaral, Carvalho, A. O., and Gomes, V. M., Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum, vol. 12, pp. 1411-1420, 2013.
Benitez-Alfonso Y, Faulkner C, Ritzenthaler C and Maule AJ (2010). Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant Microbe Interact. 23: 1403-1412. http://dx.doi.org/10.1094/MPMI-05-10-0116 PMid:20687788   Bento CS, Rodrigues R, Zerbini-Júnior FM and Sudré CP (2009). Sources of resistance against the Pepper yellow mosaic virus in chili pepper. Hortic. Bras. 27: 196-201. http://dx.doi.org/10.1590/S0102-05362009000200013   Boevink P and Oparka KJ (2005). Virus-host interactions during movement processes. Plant Physiol. 138: 1815-1821. http://dx.doi.org/10.1104/pp.105.066761 PMid:16172094 PMCid:1183373   Boiteux LS and Pessoa HBSV (1994). Additional sources of resistance to an isolates of PVYm in Capsicum germoplasm. Fitopatol. Bras. 19: 291.   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Cammue BP, Thevissen K, Hendriks M, Eggermont K, et al. (1995). A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 109: 445-455. http://dx.doi.org/10.1104/pp.109.2.445 PMid:7480341 PMCid:157606   Carmo MGF, Zerbini-Júnior FM and Maffia LA (2006). Principais doenças da cultura da pimenta. Informe Agropec. 27: 87-98.   Caruso C, Chilosi G, Caporale C, Leonardi L, et al. (1999). Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 140: 87-97. http://dx.doi.org/10.1016/S0168-9452(98)00199-X   Clarke SF, Guy PL, Burritt DJ and Jameson PE (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol. Plant 114: 157-164. http://dx.doi.org/10.1034/j.1399-3054.2002.1140201.x PMid:11903962   Diz MSS (2007). Isolamento e Caracterização de uma Proteína Transportadora de Lípideo (LTP) de Pimenta. Master's thesis, UENF, Campos dos Goytacazes.   El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, et al. (2001). Characterization of a chitinase and an endo-β-1,3- glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl. Microbiol. Biotechnol. 56: 137-143. http://dx.doi.org/10.1007/s002530100646 PMid:11499921   Elvira MI, Galdeano MM, Gilardi P, Garcia-Luque I, et al. (2008). Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of Pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J. Exp. Bot. 59: 1253-1265. http://dx.doi.org/10.1093/jxb/ern032 PMid:18375936   Fink W, Liefland M and Mendgen K (1988). Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.). Plant Physiol. 88: 270-275. http://dx.doi.org/10.1104/pp.88.2.270 PMid:16666294 PMCid:1055567   Gorovits R, Akad F, Beery H, Vidavsky F, et al. (2007). Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus in susceptible and resistant tomato plants. Mol. Plant Microbe Interact. 20: 1376-1383. http://dx.doi.org/10.1094/MPMI-20-11-1376 PMid:17977149   Granier F (1988). Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis 9: 712-718. http://dx.doi.org/10.1002/elps.1150091106 PMid:3074923   Hammond-Kosack KE and Jones JD (1997). Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575-607. http://dx.doi.org/10.1146/annurev.arplant.48.1.575 PMid:15012275   Hiraga S, Sasaki K, Ito H, Ohashi Y, et al. (2001). A large family of class III plant peroxidases. Plant Cell Physiol. 42: 462-468. http://dx.doi.org/10.1093/pcp/pce061 PMid:11382811   Houterman PM, Speijer D, Dekker HL, DE Koster CG, et al. (2007). The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol. 8: 215-221. http://dx.doi.org/10.1111/j.1364-3703.2007.00384.x PMid:20507493   Jones JD and Dangl JL (2006). The plant immune system. Nature 444: 323-329. http://dx.doi.org/10.1038/nature05286 PMid:17108957   Kawano T (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829-837. PMid:12789499   Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. http://dx.doi.org/10.1038/227680a0 PMid:5432063   Lagrimini LM and Rothstein S (1987). Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol. 84: 438-442. http://dx.doi.org/10.1104/pp.84.2.438 PMid:16665458 PMCid:1056598   Leon JC, Alpeeva IS, Chubar TA, Galaev IY, et al. (2002). Purification and substrate specificity of peroxidase from sweet potato tubers. Plant Sci. 163: 1011-1019. http://dx.doi.org/10.1016/S0168-9452(02)00275-3   Maciel-Zambolim E, Costa H, Capucho AS, Ávila AC, et al. (2004). Surto epidemiológico do vírus do mosaico amarelo do pimentão em tomateiro na região serrana do Espírito Santo. Fitopatol. Bras. 29: 325-327. http://dx.doi.org/10.1590/S0100-41582004000300017   Nascimento IR, Costa do Vale LA, Maluf WR, Gonçalves LD, et al. (2007). Reação de híbridos, linhagens e progênies de pimentão a requeima causada por Phytophthora capsici e ao mosaico amarelo causado por Pepper yellow mosaic virus (PepYMV). Ciênc. Agrotec. 31: 121-128. http://dx.doi.org/10.1590/S1413-70542007000100018   O'Brien M and Colwell RR (1987). A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide. Appl. Environ. Microbiol. 53: 1718-1720. PMid:3662513 PMCid:203942   Park CJ, Shin R, Park JM, Lee GJ, et al. (2002). Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48: 243-254. http://dx.doi.org/10.1023/A:1013383329361 PMid:11855726   Passardi F, Penel C and Dunand C (2004). Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9: 534-540. http://dx.doi.org/10.1016/j.tplants.2004.09.002 PMid:15501178   Pereira LF, Goodwin PH and Erickson L (2000). Peroxidase activity during susceptible and resistant interactions between cassava (Manihot esculenta) and Xanthomonas axonopodis pv. manihotis and Xanthomonas cassavae. J. Phytopathol. 148: 575-578. http://dx.doi.org/10.1046/j.1439-0434.2000.00548.x   Quiroga M, Guerrero C, Botella MA, Barceló A, et al. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119-1127. http://dx.doi.org/10.1104/pp.122.4.1119 PMid:10759507 PMCid:58946   Radwan DEM, Fayez KA, Mahmoud SY, Hamad A, et al. (2006). Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiol. Mol. Plant Pathol. 69: 172-181. http://dx.doi.org/10.1016/j.pmpp.2007.04.004   Radwan DE, Fayez KA, Mahmoud SY, Hamad A, et al. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol. Biochem. 45: 480-489. http://dx.doi.org/10.1016/j.plaphy.2007.03.002 PMid:17466528   Schägger H and von Jagow G (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2   Shimoni M (1994). A method for activity staining of peroxidase and β-1,3-glucanase isozymes in polyacrylamide electrophoresis gels. Anal. Biochem. 220: 36-38. http://dx.doi.org/10.1006/abio.1994.1295 PMid:7978253   Tecsi LI, Smith AM, Maule AJ and Leegood RC (1996). A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with Cucumber mosaic virus. Plant Physiol. 111: 975-985. PMid:12226342 PMCid:160966   Towbin H, Staehelin T and Gordon J (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 76: 4350-4354. http://dx.doi.org/10.1073/pnas.76.9.4350 PMid:388439 PMCid:411572   Truta AAC, Souza ARR, Nascimento AVS, Pereira RC, et al. (2004). Identidade e propriedades de isolados de potyvírus provenientes de Capsicum spp. Fitopatol. Bras. 29: 160-168. http://dx.doi.org/10.1590/S0100-41582004000200007   Van Loon LC and Van Strien EA (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97. http://dx.doi.org/10.1006/pmpp.1999.0213   Van Loon LC, Rep M and Pieterse CM (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44: 135-162. http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425 PMid:16602946   Vieira FA, Carvalho AO, Vitória AP, Retamal CA, et al. (2010). Differential expression of defence-related proteins in Vigna unguiculata (L. Walp.) seedlings after infection with Fusarium oxysporum. Crop Protect. 29: 440-447. http://dx.doi.org/10.1016/j.cropro.2009.10.010   Wang SY, Wu JH, Ng TB, Ye XY, et al. (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 PMid:15350690   Ye XS, Pan SQ and Kué J (1990). Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus. Phytopathology 80: 1295- 1299. http://dx.doi.org/10.1094/Phyto-80-1295
S. O. Moreira, Rodrigues, R., Oliveira, H. S., Medeiros, A. M., Sudré, C. P., and Gonçalves, L. S. A., Phenotypic and genotypic variation among Capsicum annuum recombinant inbred lines resistant to bacterial spot, vol. 12, pp. 1232-1242, 2013.
Becher SA, Steinmetz K, Weising K, Boury S, et al. (2000). Microsatellites for cultivar indentification in Pelargonium. Theor. Appl. Genet. 101: 643-651. http://dx.doi.org/10.1007/s001220051526   Blum E, Liu K, Mazourek M, Yoo EY, et al. (2002). Molecular mapping of the C locus for presence of pungency in Capsicum. Genome 45: 702-705. http://dx.doi.org/10.1139/g02-031 PMid:12175073   Brasil (2006). Ato nº 2 de 22 de Março de 2006. Instruções para Execução dos Ensaios de Distinguibilidade, Homogeneidade e Estabilidade de Cultivares de Pimentão e Pimenta (Capsicum spp.). Diário Oficial da República Federativa do Brasil, Brasília, 27 de Março de 2006, Seção 1. 7.   Brasil (2011). Proteção de Cultivares no Brasil. MAPA, Brasília.   Cook AA and Guevara YG (1984). Hypersensitivity in Capsicum chacoense to race 1 of the bacterial spot pathogen of pepper. Plant Dis. 68: 329-330.   Costa LV, Lopes R, Lopes MTG, Figueiredo AF, et al. (2009). Cross compatibility of domesticated hot pepper and cultivated sweet pepper. Crop Breed. Appl. Biotechnol. 9: 37-44.   Cruz CD (2006). Programa Genes: Análise Multivariada e Simulação. UFV, Viçosa.   Faria Junior LR, Bendini JN and Barreto LMR (2008). Eficiência polinizadora de Apis mellifera L. e polinização entomófila em pimentão variedade Cascadura Ikeda. Bragantia 67: 261-266. http://dx.doi.org/10.1590/S0006-87052008000200001   Giancola S, Poltri SM, Lacaze P and Hopp HE (2002). Feasibility of integration of molecular markers and morphological descriptors in real case study of a plant variety protection system for soybean. Euphytica 127: 95-113. http://dx.doi.org/10.1023/A:1019923923805   Goulão L and Oliveira CM (2001). Molecular characterization of cultivars of apple (Malus x domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122: 81-89. http://dx.doi.org/10.1023/A:1012691814643   Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, et al. (2010). Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian Ocean region. Plant Dis. 94: 993-999. http://dx.doi.org/10.1094/PDIS-94-8-0993   Jones JB, Minsavage GV, Roberts PD, Johnson RR, et al. (2002). A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology 92: 273-277. http://dx.doi.org/10.1094/PHYTO.2002.92.3.273 PMid:18943998   Kwon YS, Lee JM, Yi GB, Yi SI, et al. (2005). Use of SSR markers to complement tests of distinctiveness, uniformity, and stability (DUS) of pepper (Capsicum annuum L.) varieties. Mol. Cells 19: 428-435. PMid:15995361   Lee CJ, Yoo E, Shin J, Lee J, et al. (2005). Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol. Cells 19: 262-267. PMid:15879712   Lippert LF, Bergh BO and Smith PG (1965). Gene list for the pepper. J. Hered. 56: 30-34.   Marcuzzo LL, Fernandes JMC and Becker WF (2009). Influência da temperatura e da duração do molhamento foliar na severidade da mancha bacteriana do tomateiro. Summa Phytopathol. 35: 229-230. http://dx.doi.org/10.1590/S0100-54052009000300013   Moreira GR, Caliman FRB, Silva DJH and Ribeiro CSC (2006). Espécies e variedades de pimenta. Inf. Agropec. 27: 16-29.   Moreira SO (2008). Reação à Mancha-Bacteriana e Desempenho Agronômico de Linhas Recombinadas de Capsicum annuum L. Master's thesis, UENF, Campos dos Goytacazes.   Moreira SO (2012). Caracterização Morfológica e Molecular de Pré-Cultivares de Capsicum annuum L. com Resistência à Mancha-Bacteriana. Doctoral thesis, UENF, Campos dos Goytacazes.   Moreira SO, Rodrigues R, Araújo ML, Araújo ML, et al. (2009). Desempenho agronômico de linhas endogâmicas recombinadas de pimenta em dois sistemas de cultivo. Ciênc. Rural 39: 1387-1393. http://dx.doi.org/10.1590/S0103-84782009005000080   Moreira SO, Rodrigues R, Araújo ML, Riva-Souza EM, et al. (2010). Desempenho agronômico de linhas endogâmicas recombinadas de Capsicum annuum L. em sistema orgânico sob cultivo protegido. Ciênc. Agrotec. 34: 886-891. http://dx.doi.org/10.1590/S1413-70542010000400013   Moura MCCL, Gonçalves LSA, Sudré CP, Rodrigues R, et al. (2010). Algoritmo de gower na estimativa da divergência genética em germoplasma de pimenta. Hortic. Bras. 28: 155-161. http://dx.doi.org/10.1590/S0102-05362010000200003   Potnis N, Minsavage G, Smith JK, Hurlbert JC, et al. (2012). Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Mol. Plant Microbe Interact. 25: 307-320. http://dx.doi.org/10.1094/MPMI-08-11-0205 PMid:22112215   Prevost A and Wilkinson MJ (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107-112. http://dx.doi.org/10.1007/s001220051046   Priolli RHG, Mendes-Junior CT, Arantes NE and Contel EPB (2002). Characterization of brazilian soybean cultivars using microsatellites markers. Genet. Mol. Biol. 25: 185-193. http://dx.doi.org/10.1590/S1415-47572002000200012   R Development Core Team (2006). A Language and Environment for Statistical Computing. Vienna. R Foundation for Statistical Computing. Available at [www.r-project.org]. Accessed March 13, 2008.   Reddy MP, Sarla N and Siddiq EA (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9-17. http://dx.doi.org/10.1023/A:1020691618797   Riva-Souza EM (2006). Uso dos Métodos Genealógico e "Single Seed Descent" (SSD) para Obtenção de Linhas de Pimentão Resistentes à Mancha-Bacteriana. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes.   Riva-Souza EM, Rodrigues R, Pereira MG, Sudré CP, et al. (2004). Inheritance of bacterial spot disease in Capsicum annuum L. Crop Breed. Appl. Biotechnol. 4: 490-494.   Riva-Souza EM, Rodrigues R, Sudré CP, Pereira MG, et al. (2009). Genetic parameters and selection for resistance to bacterial spot in recombinant F6 lines of Capsicum annuum. Crop Breed. Appl. Biotechnol. 9: 108-115.   Shen J, Ding X, Liu D, Ding G, et al. (2006). Intersimple sequence repeats (ISSR) molecular fingerprinting markers for authenticating populations of Dendrobrium officinale Kimura et Migo. Biol. Pharmaceut. Bull. 29: 420-422. http://dx.doi.org/10.1248/bpb.29.420 PMid:16508138   Sokal RR and Rohlf FJ (1962). The comparison of dendrograms by objective methods. Taxon 11: 30-40. http://dx.doi.org/10.2307/1217208   Sowell G Jr (1960). Bacterial spot resistance of introduced peppers. Plant Dis. Rep. 44: 587-590.   Sudré CP, Goncalves LS, Rodrigues R, do Amaral Junior AT, et al. (2010). Genetic variability in domesticated Capsicum spp as assessed by morphological and agronomic data in mixed statistical analysis. Genet. Mol. Res. 9: 283-294. http://dx.doi.org/10.4238/vol9-1gmr698 PMid:20198584   Wagner CM (2003). Variabilidade e Base Genética da Pungência e de Caracteres do Fruto: Implicações no Melhoramento Numa População de Capsicum annuum L. Doctoral thesis, ESALQ/USP, Piracicaba.
2010
C. P. Sudré, Gonçalves, L. S. A., Rodrigues, R., Júnior, A. Tdo Amaral, Riva-Souza, E. M., and C. Bento, dosS., Genetic variability in domesticated Capsicum spp as assessed by morphological and agronomic data in mixed statistical analysis, vol. 9, pp. 283-294, 2010.
Andrews J (1995). Peppers. The Domesticated Capsicums. University of Texas Press, Austin.   Barboza GE, Bianchetti LB and Lammers TG (2005). Three new species of Capsicum (Solanaceae) and a key to the wild species from Brazil. Syst. Bot. 30: 863-871. http://dx.doi.org/10.1600/036364405775097905   Bianchetti LB (1996). Aspectos Morfológicos, Ecológicos e Biogeográficos de Dez Táxons de Capsicum (Solanaceae) Ocorrentes no Brasil. Msc. thesis, Universidade de Brasília/UNB, Brasília.   Crossa J and Franco J (2004). Statistical methods for classifying genotypes. Euphytica 137: 19-37. http://dx.doi.org/10.1023/B:EUPH.0000040500.86428.e8   Embrapa (2009). Exportações Brasileiras de Hortaliças 2000-2007. Available at [http://www.cnph.embrapa.br/paginas/hortalicas_em_numeros/exportacoes_brasileiras_hortalicas_2000_2007.pdf]. Accessed January 8, 2009.   Franco J, Crossa J, Villase-or J, Taba S, et al. (1998). Classifying genetic resources by categorical and continuous variables. Crop Sci. 38: 1688-1696. http://dx.doi.org/10.2135/cropsci1998.0011183X003800060045x   Franco J, Crossa J, Taba S and Shands H (2005). A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci. 45: 1035-1044. http://dx.doi.org/10.2135/cropsci2004.0292   Gonçalves LS, Rodrigues R, Amaral AT Jr, Karasawa M, et al. (2008). Comparison of multivariate statistical algorithms to cluster tomato heirloom accessions. Genet. Mol. Res. 7: 1289-1297. http://dx.doi.org/10.4238/vol7-4gmr526 PMid:19065764   Goncalves LS, Rodrigues R, do Amaral Junior AT, Karasawa M, et al. (2009). Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genet. Mol. Res. 8: 364-374. http://dx.doi.org/10.4238/vol8-1gmr549 PMid:19440972   Gotor E, Alercia A, Rao RV, Watts J, et al. (2008). The scientific information activity of Biodiversity International: the descriptor lists. Genet. Res. Crop Evol. 55: 757-772. http://dx.doi.org/10.1007/s10722-008-9342-x   Gower JC (1971). A general coefficient of similarity and some of its properties. Biometrics 27: 857-871. http://dx.doi.org/10.2307/2528823   Guzmán FA, Azurdia HAC, Duque MC and Carmen de Vicente M (2005). AFLP assessment of genetic diversity of Capsicum genetic resources in Guatemala: home gardens as an option for conservation. Crop Sci. 45: 363-370. http://dx.doi.org/10.2135/cropsci2005.0363   Heiser CB Jr (1976). Peppers: Capsicum (Solanaceae). In: Evolution of Crop Plants. Longmans, London, 265-268.   Hunziker AT (2001). Genera Solanacearum: the Genera of Solanaceae, Illustrated, Arranged According to a New System. Koeltz Scientific Books, Königstein.   Ince AG, Karaca M and Onus AN (2009). Development and utilization of diagnostic DAMD-PCR markers for Capsicum accessions. Genet. Res. Crop Evol. 56: 211-221. http://dx.doi.org/10.1007/s10722-008-9356-4   International Plant Genetic Resources Institute (IPGRI) (1995). Descriptores para Capsicum (Capsicum spp.). International Plant Genetic Resources Institute (IPGRI), Rome.   Krzanowski WJ (1983). Distance between populations using mixed continuous and categorical variables. Biometrika 70: 235-243. http://dx.doi.org/10.1093/biomet/70.1.235   Laurentin H (2009). Data analysis for molecular characterization of plant genetic resources. Genet. Res. Crop Evol. 56: 277-292. http://dx.doi.org/10.1007/s10722-008-9397-8   Lawrence CJ and Krzanowski WJ (1996). Mixture separation for mixed-mode data. Stat. Comput. 6: 85-92. http://dx.doi.org/10.1007/BF00161577   Matusita K (1956). Decision rule, based on the distance, for the classification problem. Ann. Inst. Statist. Math. 8: 67-77. http://dx.doi.org/10.1007/BF02863571   Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, et al. (2007). The evolution of Chili Peppers (Capsicum - Solanaceae): a cytogenetic perspective. VI International Solanaceae Conference: Genomics Meets Biodiversity. Acta Hort. 745: 137-170.   Ortiz R, Crossa J, Franco J, Sevilla R, et al. (2008). Classification of Peruvian highland maize races using plant traits. Genet. Res. Crop Evol. 55: 151-162. http://dx.doi.org/10.1007/s10722-007-9224-7   Padilla G, Cartea ME, Rodríguez VM and Ordás A (2005). Genetic diversity in a germplasm collection of Brassica rapa subsp rapa L. from northwestern Spain. Euphytica 145: 171-180. http://dx.doi.org/10.1007/s10681-005-0895-x   Pickersgill B (1971). Relationships between weedy and cultivated forms in some species of chili peppers (Genus Capsicum). Evolution 25: 683-691. http://dx.doi.org/10.2307/2406949   Pozzobon MT, Schifino-Wittmann MT and Bianchetti LB (2006). Chromosome numbers in wild and semidomesticated Brazilian Capsicum L. (Solanaceae) species: do x = 12 and x = 13 represent two evolutionary lines? Biol. J. Linn. Soc. 151: 259-269.   SAS Institute (2000). SAS OnlineDOC. Version 8. SAS Institute Inc., Cary.   Sudré CP, Cruz CD, Rodrigues R, Riva EM, et al. (2006). Variáveis multicategóricas na determinação da divergência genética entre acessos de pimenta e pimentão. Hortic. Bras. 24: 88-93. http://dx.doi.org/10.1590/S0102-05362006000100018   Ward JH Jr (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236-244. http://dx.doi.org/10.1080/01621459.1963.10500845   Wishart D (1986). Hierarchical Cluster Analysis with Messy Data. In: Classification as a Tool of Research (Gaul W and Schader M, eds.). Elsevier, Amsterdam, 453-460.   Wolfe JH (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behav. Res. 5: 329-350. http://dx.doi.org/10.1207/s15327906mbr0503_6