Publications

Found 21 results
Filters: Author is J.C.T. Dias  [Clear All Filters]
2016
E. L. S. Marques, Dias, J. C. T., Silva, G. S., Pirovani, C. P., Rezende, R. P., Marques, E. L. S., Dias, J. C. T., Silva, G. S., Pirovani, C. P., and Rezende, R. P., Effect of organic matter enrichment on the fungal community in limestone cave sediments, vol. 15, p. -, 2016.
E. L. S. Marques, Dias, J. C. T., Silva, G. S., Pirovani, C. P., Rezende, R. P., Marques, E. L. S., Dias, J. C. T., Silva, G. S., Pirovani, C. P., and Rezende, R. P., Effect of organic matter enrichment on the fungal community in limestone cave sediments, vol. 15, p. -, 2016.
E. B. Santana, Marques, E. L. S., Dias, J. C. T., Santana, E. B., Marques, E. L. S., and Dias, J. C. T., Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth, vol. 15, p. -, 2016.
E. B. Santana, Marques, E. L. S., Dias, J. C. T., Santana, E. B., Marques, E. L. S., and Dias, J. C. T., Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth, vol. 15, p. -, 2016.
T. Fdos Santos, Melo, T. A., Santos, D. S., Rezende, R. P., Dias, J. C. T., Romano, C. C., Santos, T. Fdos, Melo, T. A., Santos, D. S., Rezende, R. P., Dias, J. C. T., and Romano, C. C., Efficacy of oral administration of lactic acid bacteria isolated from cocoa in a fermented milk preparation: reduction of colitis in an experimental rat model, vol. 15, p. -, 2016.
T. Fdos Santos, Melo, T. A., Santos, D. S., Rezende, R. P., Dias, J. C. T., Romano, C. C., Santos, T. Fdos, Melo, T. A., Santos, D. S., Rezende, R. P., Dias, J. C. T., and Romano, C. C., Efficacy of oral administration of lactic acid bacteria isolated from cocoa in a fermented milk preparation: reduction of colitis in an experimental rat model, vol. 15, p. -, 2016.
F. M. O. Sousa, Moura, S. R., Quinto, C. A., Dias, J. C. T., Pirovani, C. P., Rezende, R. P., Sousa, F. M. O., Moura, S. R., Quinto, C. A., Dias, J. C. T., Pirovani, C. P., and Rezende, R. P., Functional screening for cellulolytic activity in a metagenomic fosmid library of microorganisms associated with coral, vol. 15, p. -, 2016.
F. M. O. Sousa, Moura, S. R., Quinto, C. A., Dias, J. C. T., Pirovani, C. P., Rezende, R. P., Sousa, F. M. O., Moura, S. R., Quinto, C. A., Dias, J. C. T., Pirovani, C. P., and Rezende, R. P., Functional screening for cellulolytic activity in a metagenomic fosmid library of microorganisms associated with coral, vol. 15, p. -, 2016.
2012
A. C. Fdos Santos, Marques, E. L. S., Gross, E., Souza, S. S., Dias, J. C. T., Brendel, M., and Rezende, R. P., Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments, vol. 11, pp. 190-201, 2012.
Amorim JH, Macena TN, Lacerda GV Jr, Rezende RP, et al. (2008). An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest. Genet. Mol. Res. 7: 1226-1232. http://dx.doi.org/10.4238/vol7-4gmr509 PMid:19065757 Arp DJ, Yeager CM and Hyman MR (2001). Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12: 81-103. http://dx.doi.org/10.1023/A:1012089908518 PMid:11710592 Atlas RM (1995). Biorremediation of Petroleum Pollutants. University of Louisville, Lousville. Bartha R and Pramer D (1965). Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci. 100: 68-70. http://dx.doi.org/10.1097/00010694-196507000-00011 Bock E, Koops HP, Harms H and Ahlers B (1991). The Biochemistry of Nitrifying Organisms. In: Variations in Autotrophic Life (Shively JM and Barton LL, eds.). Academic Press, San Diego, 171-200. Bordenave S, Goni-Urriza MS, Caumette P and Duran R (2007). Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097. http://dx.doi.org/10.1128/AEM.01352-07 PMid:17704271    PMCid:2075027 Bothe H, Jost G, Schloter M, Ward BB, et al. (2000). Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673-690. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00566.x PMid:11077158 Brazil (1965). Federal Law No. 4.771, of September 15, 1965. Brasília, 1965. Available at [http://www.lei.adv.br]. Accessed October 7, 2011. Burton SA and Prosser JI (2001). Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl. Environ. Microbiol. 67: 2952-2957. http://dx.doi.org/10.1128/AEM.67.7.2952-2957.2001 PMid:11425707    PMCid:92966 CONAMA (1985). Conselho Nacional do Meio Ambiente. Resolution nº 04/1985, of September 18, 1985. Available at [http://www.mma.gov.br/port/conama/res/res85/res0485.html]. Accessed October 07, 2011. Evans FF, Rosado AS, Sebastian GV, Casella R, et al. (2004). Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305. http://dx.doi.org/10.1016/j.femsec.2004.04.007 Gieseke A, Tarre S, Green M and de Beer D (2006). Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance. Appl. Environ. Microbiol. 72: 4283-4292. http://dx.doi.org/10.1128/AEM.00241-06 PMid:16751543    PMCid:1489657 Harayama S, Kasai Y and Hara A (2004). Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 15: 205-214. http://dx.doi.org/10.1016/j.copbio.2004.04.002 PMid:15193328 Heuer H, Krsek M, Baker P, Smalla K, et al. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241. PMid:9251210    PMCid:168621 Hollocher TC, Tate ME and Nicholas DJ (1981). Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J. Biol. Chem. 256: 10834-10836. PMid:7287737 Islam KR and Weil RR (2000). Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J. Soil Water Conserv. 55: 69-78. Jia Z and Conrad R (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11: 1658-1671. http://dx.doi.org/10.1111/j.1462-2920.2009.01891.x PMid:19236445 Junier P, Kim OS, Junier T, Ahn TS, et al. (2009). Community analysis of betaproteobacterial ammonia-oxidizing bacteria using the amoCAB operon. Appl. Microbiol. Biotechnol. 83: 175-188. http://dx.doi.org/10.1007/s00253-009-1923-x PMid:19274459    PMCid:2845890 Karlen DL, Andrews SS and Doran JW (2001). Soil quality: Current concepts and applications. Adv. Agron. 74: 1-40. http://dx.doi.org/10.1016/S0065-2113(01)74029-1 Kasai Y, Kishira H, Syutsubo K and Harayama S (2001). Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 3: 246-255. http://dx.doi.org/10.1046/j.1462-2920.2001.00185.x PMid:11359510 Kathiresan K and Bingham BL (2001). Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40: 81-251. http://dx.doi.org/10.1016/S0065-2881(01)40003-4 Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G, et al. (2006). The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: The Prokaryotes (Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, et al., eds.). Vol. 2. Springer, New York, 778-811. http://dx.doi.org/10.1007/0-387-30745-1_36 Leahy JG and Colwell RR (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305- 315. PMid:2215423    PMCid:372779 Maciel BM, Santos AC, Dias JC, Vidal RO, et al. (2009). Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Genet. Mol. Res. 8: 375-388. http://dx.doi.org/10.4238/vol8-1gmr559 PMid:19440973 McCaig AE, Embley TM and Prosser JI (1994). Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120: 363-367. http://dx.doi.org/10.1111/j.1574-6968.1994.tb07059.x PMid:8076810 Muyzer G, de Waal EC and Uitterlinden AG (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. PMid:7683183    PMCid:202176 Nicol GW, Leininger S, Schleper C and Prosser JI (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10: 2966-2978. http://dx.doi.org/10.1111/j.1462-2920.2008.01701.x PMid:18707610 Nicolaisen MH and Ramsing NB (2002). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203. http://dx.doi.org/10.1016/S0167-7012(02)00026-X Prosser JI (1989). Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181. http://dx.doi.org/10.1016/S0065-2911(08)60112-5 Rotthauwe JH, Witzel KP and Liesack W (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. PMid:9406389    PMCid:168793 Sayavedra-Soto LA, Hommes NG, Alzerreca JJ, Arp DJ, et al. (1998). Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiol. Lett. 167: 81-88. http://dx.doi.org/10.1111/j.1574-6968.1998.tb13211.x PMid:9785456 Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, et al. (1998). Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64: 2958-2965. PMid:9687457    PMCid:106799 Vanneli T and Hooper AB (1992). Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 58: 2321-2325. PMid:16348740    PMCid:195775 Vannelli T, Logan M, Arciero D and Hooper AB (1990). Degradation of halogenated aliphatics by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56: 1169-1171. PMid:2339874    PMCid:184364 Zhang LM, Wang M, Prosser JI, Zheng YM, et al. (2009). Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol. Ecol. 70: 52-61. http://dx.doi.org/10.1111/j.1574-6941.2009.00775.x PMid:19780828
J. H. Amorim, Vidal, R. O., Lacerda-Junior, G. V., Dias, J. C. T., Brendel, M., Rezende, R. P., and Cascardo, J. C. M., A simple boiling-based DNA extraction for RAPD profiling of landfarm soil to provide representative metagenomic content, vol. 11, pp. 182-189, 2012.
Amorim JH, Macena TN, Lacerda GV Jr, Rezende RP, et al. (2008). An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest. Genet. Mol. Res. 7: 1226-1232. http://dx.doi.org/10.4238/vol7-4gmr509 PMid:19065757 Ashburner M, Ball CA, Blake JA, Botstein D, et al. (2000). Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29. http://dx.doi.org/10.1038/75556 PMid:10802651    PMCid:3037419 Daniel R (2004). The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. http://dx.doi.org/10.1016/j.copbio.2004.04.005 PMid:15193327 Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921 Huson DH, Auch AF, Qi J and Schuster SC (2007). MEGAN analysis of metagenomic data. Genome Res. 17: 377-386. http://dx.doi.org/10.1101/gr.5969107 PMid:17255551    PMCid:1800929 Johnson PL and Slatkin M (2006). Inference of population genetic parameters in metagenomics: a clean look at messy data. Genome Res. 16: 1320-1327. http://dx.doi.org/10.1101/gr.5431206 PMid:16954540    PMCid:1581441 Kanehisa M and Goto S (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30. http://dx.doi.org/10.1093/nar/28.1.27 PMid:10592173    PMCid:102409 Maciel BM, Dias JC, Dos Santos AC, Argolo Filho RC, et al. (2007). Microbial surfactant activities from a petrochemical landfarm in a humid tropical region of Brazil. Can. J. Microbiol. 53: 937-943. http://dx.doi.org/10.1139/W07-052 PMid:17898850 McHardy AC and Rigoutsos I (2007). What’s in the mix: phylogenetic classification of metagenome sequence samples. Curr. Opin. Microbiol. 10: 499-503. http://dx.doi.org/10.1016/j.mib.2007.08.004 PMid:17933580 Riesenfeld CS, Schloss PD and Handelsman J (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525-552. http://dx.doi.org/10.1146/annurev.genet.38.072902.091216 PMid:15568985 Robe P, Nalin R, Capellano C, Vogel TM, et al. (2003). Extraction of DNA from soil. Eur. J. Soil. Biol. 39: 183-190. http://dx.doi.org/10.1016/S1164-5563(03)00033-5 Roh C, Villatte F, Kim BG and Schmid RD (2006). Comparative study of methods for extraction and purification of enviromental DNA from soil and sludge samples. Appl. Biochem. Biotech. 134: 97-112. http://dx.doi.org/10.1385/ABAB:134:2:97 Rondon MR, August PR, Bettermann AD, Brady SF, et al. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547. http://dx.doi.org/10.1128/AEM.66.6.2541-2547.2000 PMid:10831436    PMCid:110579 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Schloss PD and Handelsman J (2003). Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303-310. http://dx.doi.org/10.1016/S0958-1669(03)00067-3 Smit AFA, Hubley R and Green P (2004). RepeatMasker Open-3.0. 1996-2007. Streit WR and Schmitz RA (2004). Metagenomics - the key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498. http://dx.doi.org/10.1016/j.mib.2004.08.002 PMid:15451504 Yun J, Kang S, Park S, Yoon H, et al. (2004). Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70: 7229-7235. http://dx.doi.org/10.1128/AEM.70.12.7229-7235.2004 PMid:15574921    PMCid:535135
2011
B. M. Maciel, Dias, J. C. T., Romano, C. C., Sriranganathan, N., Brendel, M., and Rezende, R. P., Detection of Salmonella Enteritidis in asymptomatic carrier animals: comparison of quantitative real-time PCR and bacteriological culture methods, vol. 10, pp. 2578-2588, 2011.
Agron PG, Walker RL, Kinde H, Sawyer SJ, et al. (2001). Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 67: 4984-4991. http://dx.doi.org/10.1128/AEM.67.11.4984-4991.2001 PMid:11679316    PMCid:93261 APHA - American Public Health Association (1992). Compendium of Methods for the Microbiological Examination of Foods. 3rd edn. American Public Health Association, Washington. Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CM and Savelkoul PH (2003). Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J. Clin. Microbiol. 41: 4950-4954. http://dx.doi.org/10.1128/JCM.41.11.4950-4954.2003 PMid:14605122    PMCid:262485 Buh GM, Cankar K, Zel J and Gruden K (2008). Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol. 8: 26. http://dx.doi.org/10.1186/1472-6750-8-26 PMid:18325084    PMCid:2322970 Center for Diseases Control and Prevention (CDC) (1990). Update: Salmonella enteritidis infections and shell eggs - United States, 1990. MMWR Morb. Mortal Wkly Rep. 39: 902-912. PMid:2123286 Center for Diseases Control and Prevention (CDC) (1992). Outbreak of Salmonella enteritidis infection associated with consumption of raw shell eggs, 1991. MMWR Morb. Mortal Wkly Rep. 41: 369-372. PMid:1584195 Centers for Disease Control and Prevention (CDC) (2003). Outbreaks of Salmonella serotype Enteritidis infection associated with eating shell eggs - United States, 1999-2001. MMWR Morb. Mortal Wkly Rep. 51: 1149-1152. PMid:12553566 Chen S, Yee A, Griffiths M, Larkin C, et al. (1997). The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. Int. J. Food Microbiol. 35: 239-250. http://dx.doi.org/10.1016/S0168-1605(97)01241-5 De Medici D, Croci L, Delibato E, Di Pasquale S, et al. (2003). Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype Enteritidis in poultry. Appl. Environ. Microbiol. 69: 3456-3461. http://dx.doi.org/10.1128/AEM.69.6.3456-3461.2003 PMid:12788750    PMCid:161507 Deng SX, Cheng AC, Wang MS and Cao P (2007). Gastrointestinal tract distribution of Salmonella enteritidis in orally infected mice with a species-specific fluorescent quantitative polymerase chain reaction. World J. Gastroenterol. 13: 6568-6574. http://dx.doi.org/10.3748/wjg.13.6568 PMid:18161929 Deng SX, Cheng AC, Wang MS, Cao P, et al. (2008). Quantitative studies of the regular distribution pattern for Salmonella enteritidis in the internal organs of mice after oral challenge by a specific real-time polymerase chain reaction. World J. Gastroenterol. 14: 782-789. http://dx.doi.org/10.3748/wjg.14.782 PMid:18205272    PMCid:2684009 EFSA (2006). Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to “risk assessment and mitigation options of Salmonella in pig production”. EFSA J 341: 1-131. Ellingson JL, Anderson JL, Carlson SA and Sharma VK (2004). Twelve hour real-time PCR technique for the sensitive and specific detection of Salmonella in raw and ready-to-eat meat products. Mol. Cell Probes 18: 51-57. http://dx.doi.org/10.1016/j.mcp.2003.09.007 PMid:15036370 Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, et al. (2006). Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19: 165-256. http://dx.doi.org/10.1128/CMR.19.1.165-256.2006 PMid:16418529    PMCid:1360278 Galán JE and Zhou D (2000). Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. U. S. A. 97: 8754-8761. http://dx.doi.org/10.1073/pnas.97.16.8754 Hadjinicolaou AV, Demetriou VL, Emmanuel MA, Kakoyiannis CK, et al. (2009). Molecular beacon-based real-time PCR detection of primary isolates of Salmonella typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiol. 9: 97. http://dx.doi.org/10.1186/1471-2180-9-97 PMid:19454003    PMCid:2689230 Hald T, Vose D, Wegener HC and Koupeev T (2004). A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24: 255-269. http://dx.doi.org/10.1111/j.0272-4332.2004.00427.x PMid:15028016 Josefsen MH, Krause M, Hansen F and Hoorfar J (2007). Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl. Environ. Microbiol. 73: 3040-3048. http://dx.doi.org/10.1128/AEM.02823-06 PMid:17351094    PMCid:1892850 Lemmon GH and Gardner SN (2008). Predicting the sensitivity and specificity of published real-time PCR assays. Ann. Clin. Microbiol. Antimicrob. 7: 18. http://dx.doi.org/10.1186/1476-0711-7-18 PMid:18817537    PMCid:2566554 Maciel BM, Argôlo Filho RC, Freitas ES, Kruschewsky FF, et al. (2004). Ocorrência de sorotipos exóticos de Salmonella encontrados em cães assintomáticos nos distritos do município de Ilhéus / BA - Brasil. Braz. J. Vet. Res. Anim. Sci. 41: 247-253. Maciel BM, Argolo Filho RC, Nogueira SS, Dias JC, et al. (2010). High prevalence of Salmonella in tegu lizards (Tupinambis merianae), and susceptibility of the serotypes to antibiotics. Zoonoses Public Health 57: e26-e32. http://dx.doi.org/10.1111/j.1863-2378.2009.01283.x PMid:19968856 Malorny B, Hoorfar J, Hugas M, Heuvelink A, et al. (2003). Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. Int. J. Food Microbiol. 89: 241-249. http://dx.doi.org/10.1016/S0168-1605(03)00154-5 Malorny B, Paccassoni E, Fach P, Bunge C, et al. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 70: 7046-7052. http://dx.doi.org/10.1128/AEM.70.12.7046-7052.2004 PMid:15574899    PMCid:535175 Malorny B, Made D, Teufel P, Berghof-Jager C, et al. (2007). Multicenter validation study of two blockcycler- and one capillary-based real-time PCR methods for the detection of Salmonella in milk powder. Int. J. Food Microbiol. 117: 211-218. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.004 PMid:17512624 Malorny B, Lofstrom C, Wagner M, Kramer N, et al. (2008). Enumeration of salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl. Environ. Microbiol. 74: 1299-1304. http://dx.doi.org/10.1128/AEM.02489-07 PMid:18165357    PMCid:2258648 Martin SW (1984). Estimating disease prevalence and the interpretation of screening test results. Prev. Vet. Med. 2: 463-472. http://dx.doi.org/10.1016/0167-5877(84)90091-6 Nam HM, Srinivasan V, Gillespie BE, Murinda SE, et al. (2005). Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. Int. J. Food Microbiol. 102: 161-171. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.020 PMid:15913820 Nga TV, Karkey A, Dongol S, Thuy HN, et al. (2010). The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect. Dis. 10: 125. http://dx.doi.org/10.1186/1471-2334-10-125 PMid:20492644    PMCid:2886058 O’Brien JDP (1990). Aspects of Salmonella enteritidis control in poultry. Worlds Poult. Sci. J. 46: 119-124. http://dx.doi.org/10.1079/WPS19900015 Perelle S, Dilasser F, Malorny B, Grout J, et al. (2004). Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Mol. Cell Probes 18: 409-420. http://dx.doi.org/10.1016/j.mcp.2004.07.001 PMid:15488381 Pintar K, Cook A, Pollari F, Ravel A, et al. (2007). Quantitative effect of refrigerated storage time on the enumeration of Campylobacter, Listeria, and Salmonella on artificially inoculated raw chicken meat. J. Food Prot. 70: 739-743. PMid:17388068 Temelli S, Kahya S, Eyigor A and Carli KT (2010). Incidence of Salmonella Enteritidis in chicken layer flocks in Turkey: Results by real-time polymerase chain reaction and International Organization for Standardization culture methods. Poult. Sci. 89: 1406-1410. http://dx.doi.org/10.3382/ps.2010-00796 PMid:20548068 WHO-GFN (2009). WHO Global Foodborne Infections Network Country Databank - A resource to link human and non-human sources of Salmonella. Available at [http://www.who.int/gfn/activities/CDB_poster_Sept09.pdf]. Accessed June 27, 2009. Wolffs PF, Glencross K, Thibaudeau R and Griffiths MW (2006). Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl. Environ. Microbiol. 72: 3896-3900. http://dx.doi.org/10.1128/AEM.02112-05 PMid:16751494    PMCid:1489624
T. F. Santos, Santana, L. K. A., Santos, A. C. F., Silva, G. S., Romano, C. C., Dias, J. C. T., and Rezende, R. P., Lactic acid bacteria dynamics during spontaneous fermentation of cocoa beans verified by culture-independent denaturing gradient gel electrophoresis, vol. 10, pp. 2702-2709, 2011.
Ardhana MM and Fleet GH (2003). The microbial ecology of cocoa bean fermentations in Indonesia. Int. J. Food Microbiol. 86: 87-99. http://dx.doi.org/10.1016/S0168-1605(03)00081-3 Beidler JL, Hilliard PR and Rill RL (1982). Ultrasensitive staining of nucleic acids with silver. Anal Biochem. 126: 374- 380. http://dx.doi.org/10.1016/0003-2697(82)90530-9 Camu N, De Winter T, Verbrugghe K, Cleenwerck I, et al. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73: 1809-1824. http://dx.doi.org/10.1128/AEM.02189-06 PMid:17277227    PMCid:1828797 Camu N, Gonzalez A, De Winter T, Van Schoor A, et al. (2008). Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 74: 86-98. http://dx.doi.org/10.1128/AEM.01512-07 PMid:17993565    PMCid:2223199 Creste S, Tulmann Neto A and Figueira A (2001). Detection of single sequence repeat polymorphisms in denaturing polyacrilamide sequencing gels by silver staining. Plant Mol. Biol. Rep. 19: 299-306. http://dx.doi.org/10.1007/BF02772828 Endo A and Okada S (2005). Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J. Biosci. Bioeng. 99: 216-221. http://dx.doi.org/10.1263/jbb.99.216 PMid:16233780 Jespersen L, Nielsen DS, Honholt S and Jakobsen M (2005). Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res. 5: 441-453. http://dx.doi.org/10.1016/j.femsyr.2004.11.002 PMid:15691749 Kostinek M, Ban-Koffi L, Ottah-Atikpo M, Teniola D, et al. (2008). Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria. Curr. Microbiol. 56: 306-314. http://dx.doi.org/10.1007/s00284-008-9097-9 PMid:18213481 Maciel BM, Santos AC, Dias JC, Vidal RO, et al. (2009). Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Genet. Mol. Res. 8: 375-388. http://dx.doi.org/10.4238/vol8-1gmr559 PMid:19440973 Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, et al. (2007). The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 114: 168-186. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.09.010 PMid:17161485 Nielsen DS, Snitkjaer P and van den Berg F (2008). Investigating the fermentation of cocoa by correlating denaturing gradient gel electrophoresis profiles and near infrared spectra. Int. J. Food Microbiol. 125: 133-140. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.040 PMid:18499292 Schwan RF and Wheals AE (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Crit. Rev. Food Sci. Nutr. 44: 205-221. http://dx.doi.org/10.1080/10408690490464104 PMid:15462126 Walter J, Hertel C, Tannock GW, Lis CM, et al. (2001). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578-2585. http://dx.doi.org/10.1128/AEM.67.6.2578-2585.2001 PMid:11375166    PMCid:92910 Zoumpopoulou G, Foligne B, Christodoulou K, Grangette C, et al. (2008). Actobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine modelsInternational. Int. J. Food Microbiol. 121: 18-26. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.10.013 PMid:18077037