Publications
Found 6 results
Filters: Author is B.M. Maciel [Clear All Filters]
“Detection of Toxoplasma gondii DNA in Brazilian oysters (Crassostrea rhizophorae)”, vol. 14, pp. 4658-4665, 2015.
, “Detection of Toxoplasma gondii DNA in naturally infected sheep’s milk”, vol. 14, pp. 8658-8662, 2015.
, , ,
“Detection of Salmonella Enteritidis in asymptomatic carrier animals: comparison of quantitative real-time PCR and bacteriological culture methods”, vol. 10, pp. 2578-2588, 2011.
, Agron PG, Walker RL, Kinde H, Sawyer SJ, et al. (2001). Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 67: 4984-4991.
http://dx.doi.org/10.1128/AEM.67.11.4984-4991.2001
PMid:11679316 PMCid:93261
APHA - American Public Health Association (1992). Compendium of Methods for the Microbiological Examination of Foods. 3rd edn. American Public Health Association, Washington.
Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CM and Savelkoul PH (2003). Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J. Clin. Microbiol. 41: 4950-4954.
http://dx.doi.org/10.1128/JCM.41.11.4950-4954.2003
PMid:14605122 PMCid:262485
Buh GM, Cankar K, Zel J and Gruden K (2008). Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol. 8: 26.
http://dx.doi.org/10.1186/1472-6750-8-26
PMid:18325084 PMCid:2322970
Center for Diseases Control and Prevention (CDC) (1990). Update: Salmonella enteritidis infections and shell eggs - United States, 1990. MMWR Morb. Mortal Wkly Rep. 39: 902-912.
PMid:2123286
Center for Diseases Control and Prevention (CDC) (1992). Outbreak of Salmonella enteritidis infection associated with consumption of raw shell eggs, 1991. MMWR Morb. Mortal Wkly Rep. 41: 369-372.
PMid:1584195
Centers for Disease Control and Prevention (CDC) (2003). Outbreaks of Salmonella serotype Enteritidis infection associated with eating shell eggs - United States, 1999-2001. MMWR Morb. Mortal Wkly Rep. 51: 1149-1152.
PMid:12553566
Chen S, Yee A, Griffiths M, Larkin C, et al. (1997). The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. Int. J. Food Microbiol. 35: 239-250.
http://dx.doi.org/10.1016/S0168-1605(97)01241-5
De Medici D, Croci L, Delibato E, Di Pasquale S, et al. (2003). Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype Enteritidis in poultry. Appl. Environ. Microbiol. 69: 3456-3461.
http://dx.doi.org/10.1128/AEM.69.6.3456-3461.2003
PMid:12788750 PMCid:161507
Deng SX, Cheng AC, Wang MS and Cao P (2007). Gastrointestinal tract distribution of Salmonella enteritidis in orally infected mice with a species-specific fluorescent quantitative polymerase chain reaction. World J. Gastroenterol. 13: 6568-6574.
http://dx.doi.org/10.3748/wjg.13.6568
PMid:18161929
Deng SX, Cheng AC, Wang MS, Cao P, et al. (2008). Quantitative studies of the regular distribution pattern for Salmonella enteritidis in the internal organs of mice after oral challenge by a specific real-time polymerase chain reaction. World J. Gastroenterol. 14: 782-789.
http://dx.doi.org/10.3748/wjg.14.782
PMid:18205272 PMCid:2684009
EFSA (2006). Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to “risk assessment and mitigation options of Salmonella in pig production”. EFSA J 341: 1-131.
Ellingson JL, Anderson JL, Carlson SA and Sharma VK (2004). Twelve hour real-time PCR technique for the sensitive and specific detection of Salmonella in raw and ready-to-eat meat products. Mol. Cell Probes 18: 51-57.
http://dx.doi.org/10.1016/j.mcp.2003.09.007
PMid:15036370
Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, et al. (2006). Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19: 165-256.
http://dx.doi.org/10.1128/CMR.19.1.165-256.2006
PMid:16418529 PMCid:1360278
Galán JE and Zhou D (2000). Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. U. S. A. 97: 8754-8761.
http://dx.doi.org/10.1073/pnas.97.16.8754
Hadjinicolaou AV, Demetriou VL, Emmanuel MA, Kakoyiannis CK, et al. (2009). Molecular beacon-based real-time PCR detection of primary isolates of Salmonella typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiol. 9: 97.
http://dx.doi.org/10.1186/1471-2180-9-97
PMid:19454003 PMCid:2689230
Hald T, Vose D, Wegener HC and Koupeev T (2004). A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24: 255-269.
http://dx.doi.org/10.1111/j.0272-4332.2004.00427.x
PMid:15028016
Josefsen MH, Krause M, Hansen F and Hoorfar J (2007). Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl. Environ. Microbiol. 73: 3040-3048.
http://dx.doi.org/10.1128/AEM.02823-06
PMid:17351094 PMCid:1892850
Lemmon GH and Gardner SN (2008). Predicting the sensitivity and specificity of published real-time PCR assays. Ann. Clin. Microbiol. Antimicrob. 7: 18.
http://dx.doi.org/10.1186/1476-0711-7-18
PMid:18817537 PMCid:2566554
Maciel BM, Argôlo Filho RC, Freitas ES, Kruschewsky FF, et al. (2004). Ocorrência de sorotipos exóticos de Salmonella encontrados em cães assintomáticos nos distritos do município de Ilhéus / BA - Brasil. Braz. J. Vet. Res. Anim. Sci. 41: 247-253.
Maciel BM, Argolo Filho RC, Nogueira SS, Dias JC, et al. (2010). High prevalence of Salmonella in tegu lizards (Tupinambis merianae), and susceptibility of the serotypes to antibiotics. Zoonoses Public Health 57: e26-e32.
http://dx.doi.org/10.1111/j.1863-2378.2009.01283.x
PMid:19968856
Malorny B, Hoorfar J, Hugas M, Heuvelink A, et al. (2003). Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. Int. J. Food Microbiol. 89: 241-249.
http://dx.doi.org/10.1016/S0168-1605(03)00154-5
Malorny B, Paccassoni E, Fach P, Bunge C, et al. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 70: 7046-7052.
http://dx.doi.org/10.1128/AEM.70.12.7046-7052.2004
PMid:15574899 PMCid:535175
Malorny B, Made D, Teufel P, Berghof-Jager C, et al. (2007). Multicenter validation study of two blockcycler- and one capillary-based real-time PCR methods for the detection of Salmonella in milk powder. Int. J. Food Microbiol. 117: 211-218.
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.004
PMid:17512624
Malorny B, Lofstrom C, Wagner M, Kramer N, et al. (2008). Enumeration of salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl. Environ. Microbiol. 74: 1299-1304.
http://dx.doi.org/10.1128/AEM.02489-07
PMid:18165357 PMCid:2258648
Martin SW (1984). Estimating disease prevalence and the interpretation of screening test results. Prev. Vet. Med. 2: 463-472.
http://dx.doi.org/10.1016/0167-5877(84)90091-6
Nam HM, Srinivasan V, Gillespie BE, Murinda SE, et al. (2005). Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. Int. J. Food Microbiol. 102: 161-171.
http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.020
PMid:15913820
Nga TV, Karkey A, Dongol S, Thuy HN, et al. (2010). The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect. Dis. 10: 125.
http://dx.doi.org/10.1186/1471-2334-10-125
PMid:20492644 PMCid:2886058
O’Brien JDP (1990). Aspects of Salmonella enteritidis control in poultry. Worlds Poult. Sci. J. 46: 119-124.
http://dx.doi.org/10.1079/WPS19900015
Perelle S, Dilasser F, Malorny B, Grout J, et al. (2004). Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Mol. Cell Probes 18: 409-420.
http://dx.doi.org/10.1016/j.mcp.2004.07.001
PMid:15488381
Pintar K, Cook A, Pollari F, Ravel A, et al. (2007). Quantitative effect of refrigerated storage time on the enumeration of Campylobacter, Listeria, and Salmonella on artificially inoculated raw chicken meat. J. Food Prot. 70: 739-743.
PMid:17388068
Temelli S, Kahya S, Eyigor A and Carli KT (2010). Incidence of Salmonella Enteritidis in chicken layer flocks in Turkey: Results by real-time polymerase chain reaction and International Organization for Standardization culture methods. Poult. Sci. 89: 1406-1410.
http://dx.doi.org/10.3382/ps.2010-00796
PMid:20548068
WHO-GFN (2009). WHO Global Foodborne Infections Network Country Databank - A resource to link human and non-human sources of Salmonella. Available at [http://www.who.int/gfn/activities/CDB_poster_Sept09.pdf]. Accessed June 27, 2009.
Wolffs PF, Glencross K, Thibaudeau R and Griffiths MW (2006). Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl. Environ. Microbiol. 72: 3896-3900.
http://dx.doi.org/10.1128/AEM.02112-05
PMid:16751494 PMCid:1489624