Publications

Found 2 results
Filters: Author is L.D.P. Rona  [Clear All Filters]
2016
M. L. Collet, Frizzo, C., Orlandin, E., Rona, L. D. P., Nascimento, J. C., Montano, M. A. E., Müller, G. A., Wagner, G., Collet, M. L., Frizzo, C., Orlandin, E., Rona, L. D. P., Nascimento, J. C., Montano, M. A. E., Müller, G. A., and Wagner, G., Frequency of the Val1016Ile mutation on the kdr gene in Aedes aegypti (Diptera: Culicidae) in south Brazil, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflicts of interest. ACKNOWLEDGMENTS We are thankful to Andre Nóbrega Pitaluga for assistance. M.L. Colleta, C. Frizzoa, and E. Orlandina received scholarships from Universidade do Oeste de Santa Catarina (Unoesc) and CNPq (Brazilian Government Agency). REFERENCES Aguirre-Obando AO, Pietrobon AJ, Dalla Bona AC, Navarro-Silva MA, et al (2016). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in Aedes aegypti populations from Jacarezinho (Brazil) after a dengue outbreak. Rev. Bras. Entomol. 60: 94-100. http://dx.doi.org/10.1016/j.rbe.2015.11.009 Almeida Fd, Moura AS, Cardoso AF, Winter CE, et al (2011). Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae). Infect. Genet. Evol. 11: 2138-2143. http://dx.doi.org/10.1016/j.meegid.2011.08.022 Alvarez LC, Ponce G, Saavedra-Rodriguez K, Lopez B, et al (2015). Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela. Pest Manag. Sci. 71: 863-869. http://dx.doi.org/10.1002/ps.3846 Batista E (2012). Evolução de mutações no gene do canal de sódio associadas à resistência tipo Kdr em populações de Aedes (Stegomyia) aegypti do Estado de São Paulo. Master’s thesis, Faculdade de Saúde Pública, USP, São Paulo. Belinato TA, Martins AJ, Valle D, et al (2012). Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos. Mem. Inst. Oswaldo Cruz 107: 916-922. http://dx.doi.org/10.1590/S0074-02762012000700013 Braga IA, Valle D, et al (2007a). Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiol. Serv. Saúde 16: 279-293. Braga IA, Valle D, et al (2007b). Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no Brasil. Epidemiol. Serv. Saúde 16: 205-302. Brasil MS (2016). Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 13, 2016. Boletim Epidemiológico. Available at [http://portalsaude.saude.gov.br/images/pdf/2016/abril/26/2016-014---Dengue-SE13-prelo.pdf]. Accessed April 22, 2016. Brengues C, Hawkes NJ, Chandre F, McCarroll L, et al (2003). Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17: 87-94. http://dx.doi.org/10.1046/j.1365-2915.2003.00412.x Brito LP, Linss JGB, Lima-Camara TN, Belinato TA, et al (2013). Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS One 8: e60878. http://dx.doi.org/10.1371/journal.pone.0060878 Carvalho DO, McKemey AR, Garziera L, Lacroix R, et al (2015). Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 9: e0003864. http://dx.doi.org/10.1371/journal.pntd.0003864 Carvalho MdoS, Caldas ED, Degallier N, Vilarinhos PdeT, et al (2004). Suscetibilidade de larvas de Aedes aegypti ao inseticida temefós no Distrito Federal. Rev. Saude Publica 38: 623-629. http://dx.doi.org/10.1590/S0034-89102004000500002 Charlesworth B, et al (2009). Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10: 195-205 http://dx.doi.org/doi:10.1038/nrg2526. http://dx.doi.org/10.1038/nrg2526 Chediak M, G Pimenta FJrCoelhoGE, Braga IA, et al (2016). Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Mem. Inst. Oswaldo Cruz 111: 311-321. http://dx.doi.org/10.1590/0074-02760150409 Davies TE, O’Reilly AO, Field LM, Wallace B, et al (2008). Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Manag. Sci. 64: 1126-1130. http://dx.doi.org/10.1002/ps.1617 DIVE (2015). Boletim sobre situação da dengue, febre de chikungunya e febre do zika vírus em Santa Catarina. Diretoria de Vigilância Epidêmiológica do Estado de Santa Catarina, Brasil. Available at [http://www.dive.sc.gov.br/index.php/arquivo-noticias/250-boletim-sobre-situacao-da-dengue-febre-de-chikungunya-e-febre-do-zika-virus-em-santa-catarina-atualizado-em-06-01-2016]. Accessed January 15, 2016. Excoffier L, Lischer HEL, et al (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x FUNASA (2001). Dengue instruções para pessoal de combate ao vetor: manual de normas técnicas. Fundação Nacional da Saúde, Brasil. Available at [http://bvsms.saude.gov.br/bvs/publicacoes/funasa/man_dengue.pdf]. Accessed March 15, 2016. García GP, Flores AE, Fernández-Salas I, Saavedra-Rodríguez K, et al (2009). Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. PLoS Negl. Trop. Dis. 3: e531. http://dx.doi.org/10.1371/journal.pntd.0000531 Honório NA, Câmara DCP, Calvet GA, Brasil P, et al (2015). Chikungunya: an arbovirus infection in the process of establishment and expansion in Brazil. Cad. Saude Publica 31: 906-908 .http://dx.doi.org/10.1590/0102-311XPE020515 Ishak IH, Jaal Z, Ranson H, Wondji CS, et al (2015). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit. Vectors 8: 181. http://dx.doi.org/10.1186/s13071-015-0797-2 Julio NB, Chiappero MB, Rossi HJ, Rondan Dueñas JC, et al (2009). Genetic structure of Aedes aegypti in the city of Córdoba (Argentina), a recently reinfested area. Mem. Inst. Oswaldo Cruz 104: 626-631. http://dx.doi.org/10.1590/S0074-02762009000400016 Lima EP, Paiva MHS, de Araújo AP, da Silva EV, et al (2011). Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit. Vectors 4: 5. http://dx.doi.org/10.1186/1756-3305-4-5 Lima VS, Pinto AC, Rafael MS, et al (2015). Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia. Genet. Mol. Res. 14: 16728-16735. http://dx.doi.org/10.4238/2015.December.11.20 Lopes N, Nozawa C, Linhares REC, et al (2014). General features and epidemiology of emerging arboviruses in Brazil. Rev. Pan-Amaz. Saude. 5: 55-64 .http://dx.doi.org/10.5123/S2176-62232014000300007 Macoris MdeL, Andrighetti MTM, Wanderley DMV, Ribolla PEM, et al (2014). Impact of insecticide resistance on the field control of Aedes aegypti in the State of São Paulo. Rev. Soc. Bras. Med. Trop. 47: 573-578. http://dx.doi.org/10.1590/0037-8682-0141-2014 Maia RT, Scarpassa VM, Maciel-Litaiff LH, Tadei WP, et al (2009). Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Genet. Mol. Res. 8: 998-1007. http://dx.doi.org/10.4238/vol8-3gmr624 Marcondes CB, Ximenes MFFM, et al (2015). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev. Soc. Bras. Med. Trop. .http://dx.doi.org/10.1590/0037-8682-0220-2015 Martinez-Torres D, Chandre F, Williamson MS, Darriet F, et al (1998). Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol. 7: 179-184. http://dx.doi.org/10.1046/j.1365-2583.1998.72062.x Martinez-Torres D, Chevillon C, Brun-Barale A, Pauron D, et al (1999). Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pest Manag. Sci. 55: 1012-1020. http://dx.doi.org/10.1002/(SICI)1096-9063(199910)55:10<1012::AID-PS39>3.0.CO;2-5 Martins AJ, Lima JBP, Peixoto AA, Valle D, et al (2009). Frequency of Val1016Ile mutation in the voltage-gated sodium channel gene of Aedes aegypti Brazilian populations. Trop. Med. Int. Health 14: 1351-1355. http://dx.doi.org/10.1111/j.1365-3156.2009.02378.x Nei M (1975). Molecular population genetics and evolution. North-Holland Pub. Co., Amsterdam. Ohta T, Gillespie JH, et al (1996). Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49: 128-142. http://dx.doi.org/10.1006/tpbi.1996.0007 Piccoli CF (2010). Análise de mutações no fragmento do gene que expressa a proteína transmembrana de canal de sódio (kdr) e da suscetibilidade a inseticidas em populações de Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae). Master’s thesis, UFPR, Paraná. Polanczyk RA, Garcia MO, Alves SB, et al (2003). Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti. Rev. Saúde Púb 37: 813-816 .http://dx.doi.org/10.1590/S0034-89102003000600020 Rajatileka S, Black WC4thSaavedra-RodriguezK, Trongtokit Y, et al (2008). Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti. Acta Trop. 108: 54-57. http://dx.doi.org/10.1016/j.actatropica.2008.08.004 Rodríguez MM, Bisset JA, De Armas Y, Ramos F, et al (2005). Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. J. Am. Mosq. Control Assoc. 21: 437-445. http://dx.doi.org/10.2987/8756-971X(2006)21[437:PISOAA]2.0.CO;2 Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, et al (2007). A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol. Biol. 16: 785-798. http://dx.doi.org/10.1111/j.1365-2583.2007.00774.x Santolamazza F, Caputo B, Nwakanma DC, Fanello C, et al (2015). Remarkable diversity of intron-1 of the para voltage-gated sodium channel gene in an Anopheles gambiae/Anopheles coluzzii hybrid zone. Malar. J. 14: 9. http://dx.doi.org/10.1186/s12936-014-0522-1 Villar L, Dayan GH, Arredondo-García JL, Rivera DM, CYD15 Study Groupet al (2015). Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372: 113-123. http://dx.doi.org/10.1056/NEJMoa1411037
M. L. Collet, Frizzo, C., Orlandin, E., Rona, L. D. P., Nascimento, J. C., Montano, M. A. E., Müller, G. A., Wagner, G., Collet, M. L., Frizzo, C., Orlandin, E., Rona, L. D. P., Nascimento, J. C., Montano, M. A. E., Müller, G. A., and Wagner, G., Frequency of the Val1016Ile mutation on the kdr gene in Aedes aegypti (Diptera: Culicidae) in south Brazil, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflicts of interest. ACKNOWLEDGMENTS We are thankful to Andre Nóbrega Pitaluga for assistance. M.L. Colleta, C. Frizzoa, and E. Orlandina received scholarships from Universidade do Oeste de Santa Catarina (Unoesc) and CNPq (Brazilian Government Agency). REFERENCES Aguirre-Obando AO, Pietrobon AJ, Dalla Bona AC, Navarro-Silva MA, et al (2016). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in Aedes aegypti populations from Jacarezinho (Brazil) after a dengue outbreak. Rev. Bras. Entomol. 60: 94-100. http://dx.doi.org/10.1016/j.rbe.2015.11.009 Almeida Fd, Moura AS, Cardoso AF, Winter CE, et al (2011). Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae). Infect. Genet. Evol. 11: 2138-2143. http://dx.doi.org/10.1016/j.meegid.2011.08.022 Alvarez LC, Ponce G, Saavedra-Rodriguez K, Lopez B, et al (2015). Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela. Pest Manag. Sci. 71: 863-869. http://dx.doi.org/10.1002/ps.3846 Batista E (2012). Evolução de mutações no gene do canal de sódio associadas à resistência tipo Kdr em populações de Aedes (Stegomyia) aegypti do Estado de São Paulo. Master’s thesis, Faculdade de Saúde Pública, USP, São Paulo. Belinato TA, Martins AJ, Valle D, et al (2012). Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos. Mem. Inst. Oswaldo Cruz 107: 916-922. http://dx.doi.org/10.1590/S0074-02762012000700013 Braga IA, Valle D, et al (2007a). Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiol. Serv. Saúde 16: 279-293. Braga IA, Valle D, et al (2007b). Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no Brasil. Epidemiol. Serv. Saúde 16: 205-302. Brasil MS (2016). Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 13, 2016. Boletim Epidemiológico. Available at [http://portalsaude.saude.gov.br/images/pdf/2016/abril/26/2016-014---Dengue-SE13-prelo.pdf]. Accessed April 22, 2016. Brengues C, Hawkes NJ, Chandre F, McCarroll L, et al (2003). Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17: 87-94. http://dx.doi.org/10.1046/j.1365-2915.2003.00412.x Brito LP, Linss JGB, Lima-Camara TN, Belinato TA, et al (2013). Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS One 8: e60878. http://dx.doi.org/10.1371/journal.pone.0060878 Carvalho DO, McKemey AR, Garziera L, Lacroix R, et al (2015). Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 9: e0003864. http://dx.doi.org/10.1371/journal.pntd.0003864 Carvalho MdoS, Caldas ED, Degallier N, Vilarinhos PdeT, et al (2004). Suscetibilidade de larvas de Aedes aegypti ao inseticida temefós no Distrito Federal. Rev. Saude Publica 38: 623-629. http://dx.doi.org/10.1590/S0034-89102004000500002 Charlesworth B, et al (2009). Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10: 195-205 http://dx.doi.org/doi:10.1038/nrg2526. http://dx.doi.org/10.1038/nrg2526 Chediak M, G Pimenta FJrCoelhoGE, Braga IA, et al (2016). Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Mem. Inst. Oswaldo Cruz 111: 311-321. http://dx.doi.org/10.1590/0074-02760150409 Davies TE, O’Reilly AO, Field LM, Wallace B, et al (2008). Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Manag. Sci. 64: 1126-1130. http://dx.doi.org/10.1002/ps.1617 DIVE (2015). Boletim sobre situação da dengue, febre de chikungunya e febre do zika vírus em Santa Catarina. Diretoria de Vigilância Epidêmiológica do Estado de Santa Catarina, Brasil. Available at [http://www.dive.sc.gov.br/index.php/arquivo-noticias/250-boletim-sobre-situacao-da-dengue-febre-de-chikungunya-e-febre-do-zika-virus-em-santa-catarina-atualizado-em-06-01-2016]. Accessed January 15, 2016. Excoffier L, Lischer HEL, et al (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x FUNASA (2001). Dengue instruções para pessoal de combate ao vetor: manual de normas técnicas. Fundação Nacional da Saúde, Brasil. Available at [http://bvsms.saude.gov.br/bvs/publicacoes/funasa/man_dengue.pdf]. Accessed March 15, 2016. García GP, Flores AE, Fernández-Salas I, Saavedra-Rodríguez K, et al (2009). Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. PLoS Negl. Trop. Dis. 3: e531. http://dx.doi.org/10.1371/journal.pntd.0000531 Honório NA, Câmara DCP, Calvet GA, Brasil P, et al (2015). Chikungunya: an arbovirus infection in the process of establishment and expansion in Brazil. Cad. Saude Publica 31: 906-908 .http://dx.doi.org/10.1590/0102-311XPE020515 Ishak IH, Jaal Z, Ranson H, Wondji CS, et al (2015). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit. Vectors 8: 181. http://dx.doi.org/10.1186/s13071-015-0797-2 Julio NB, Chiappero MB, Rossi HJ, Rondan Dueñas JC, et al (2009). Genetic structure of Aedes aegypti in the city of Córdoba (Argentina), a recently reinfested area. Mem. Inst. Oswaldo Cruz 104: 626-631. http://dx.doi.org/10.1590/S0074-02762009000400016 Lima EP, Paiva MHS, de Araújo AP, da Silva EV, et al (2011). Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit. Vectors 4: 5. http://dx.doi.org/10.1186/1756-3305-4-5 Lima VS, Pinto AC, Rafael MS, et al (2015). Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia. Genet. Mol. Res. 14: 16728-16735. http://dx.doi.org/10.4238/2015.December.11.20 Lopes N, Nozawa C, Linhares REC, et al (2014). General features and epidemiology of emerging arboviruses in Brazil. Rev. Pan-Amaz. Saude. 5: 55-64 .http://dx.doi.org/10.5123/S2176-62232014000300007 Macoris MdeL, Andrighetti MTM, Wanderley DMV, Ribolla PEM, et al (2014). Impact of insecticide resistance on the field control of Aedes aegypti in the State of São Paulo. Rev. Soc. Bras. Med. Trop. 47: 573-578. http://dx.doi.org/10.1590/0037-8682-0141-2014 Maia RT, Scarpassa VM, Maciel-Litaiff LH, Tadei WP, et al (2009). Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Genet. Mol. Res. 8: 998-1007. http://dx.doi.org/10.4238/vol8-3gmr624 Marcondes CB, Ximenes MFFM, et al (2015). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev. Soc. Bras. Med. Trop. .http://dx.doi.org/10.1590/0037-8682-0220-2015 Martinez-Torres D, Chandre F, Williamson MS, Darriet F, et al (1998). Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol. 7: 179-184. http://dx.doi.org/10.1046/j.1365-2583.1998.72062.x Martinez-Torres D, Chevillon C, Brun-Barale A, Pauron D, et al (1999). Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pest Manag. Sci. 55: 1012-1020. http://dx.doi.org/10.1002/(SICI)1096-9063(199910)55:10<1012::AID-PS39>3.0.CO;2-5 Martins AJ, Lima JBP, Peixoto AA, Valle D, et al (2009). Frequency of Val1016Ile mutation in the voltage-gated sodium channel gene of Aedes aegypti Brazilian populations. Trop. Med. Int. Health 14: 1351-1355. http://dx.doi.org/10.1111/j.1365-3156.2009.02378.x Nei M (1975). Molecular population genetics and evolution. North-Holland Pub. Co., Amsterdam. Ohta T, Gillespie JH, et al (1996). Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49: 128-142. http://dx.doi.org/10.1006/tpbi.1996.0007 Piccoli CF (2010). Análise de mutações no fragmento do gene que expressa a proteína transmembrana de canal de sódio (kdr) e da suscetibilidade a inseticidas em populações de Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae). Master’s thesis, UFPR, Paraná. Polanczyk RA, Garcia MO, Alves SB, et al (2003). Potencial de Bacillus thuringiensis israelensis Berliner no controle de Aedes aegypti. Rev. Saúde Púb 37: 813-816 .http://dx.doi.org/10.1590/S0034-89102003000600020 Rajatileka S, Black WC4thSaavedra-RodriguezK, Trongtokit Y, et al (2008). Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti. Acta Trop. 108: 54-57. http://dx.doi.org/10.1016/j.actatropica.2008.08.004 Rodríguez MM, Bisset JA, De Armas Y, Ramos F, et al (2005). Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. J. Am. Mosq. Control Assoc. 21: 437-445. http://dx.doi.org/10.2987/8756-971X(2006)21[437:PISOAA]2.0.CO;2 Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, et al (2007). A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol. Biol. 16: 785-798. http://dx.doi.org/10.1111/j.1365-2583.2007.00774.x Santolamazza F, Caputo B, Nwakanma DC, Fanello C, et al (2015). Remarkable diversity of intron-1 of the para voltage-gated sodium channel gene in an Anopheles gambiae/Anopheles coluzzii hybrid zone. Malar. J. 14: 9. http://dx.doi.org/10.1186/s12936-014-0522-1 Villar L, Dayan GH, Arredondo-García JL, Rivera DM, CYD15 Study Groupet al (2015). Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372: 113-123. http://dx.doi.org/10.1056/NEJMoa1411037