Publications

Found 2 results
Filters: Author is L.S. Pereira  [Clear All Filters]
2016
G. C. V. Bard, Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., Gomes, V. M., Bard, G. C. V., Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., and Gomes, V. M., Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS This study forms part of G.C.V. Bard’s DSc degree thesis and was carried out at Universidade Estadual do Norte Fluminense. Research supported by CNPq, FAPERJ, and CAPES through the CAPES/Toxicology project. We wish to thank L.C.D. Souza and V.M. Kokis for technical assistance. REFERENCES Aerts AM, François IE, Meert EM, Li QT, et al (2007). The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13: 243-247. http://dx.doi.org/10.1159/000104753 Benko-Iseppon AM, Galdino SL, Calsa TJrKidoEA, et al (2010). Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci. 11: 181-188. http://dx.doi.org/10.2174/138920310791112075 Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J, et al (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69: 55-59. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04174.x Cameron KD, Teece MA, Smart LB, et al (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. http://dx.doi.org/10.1104/pp.105.069724 Carvalho AO, Teodoro CES, Cunha MD, Okorokova-Façanha AL, et al (2004). Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol. Plant. 122: 328-336. http://dx.doi.org/10.1111/j.1399-3054.2004.00413.x Carvalho AdeO, Gomes VM, et al (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144-1153. http://dx.doi.org/10.1016/j.peptides.2007.03.004 Filho RL, Romero RS, et al (2009). Sensibilidade de Xanthamonas vesicatoria a antibióticos para desenvolvimento de um meio semi-seletivo. Rer. Trop. –. Cienc. Agr. Biol. 3: 28-39. Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, et al (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 142: 233-246. http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x Domínguez E, Heredia-Guerrero JA, Heredia A, et al (2015). Plant cutin genesis: unanswered questions. Trends Plant Sci. 20: 551-558. http://dx.doi.org/10.1016/j.tplants.2015.05.009 Dubreil L, Méliande S, Chiron H, Compoint JP, et al (1998). Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem. 75: 222-229. http://dx.doi.org/10.1094/CCHEM.1998.75.2.222 Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV, et al (2005). Diversity of wheat anti-microbial peptides. Peptides 26: 2064-2073. http://dx.doi.org/10.1016/j.peptides.2005.03.007 Gonçalves LS, Rodrigues R, Diz MS, Robaina RR, et al (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genet. Mol. Res. 12: 1411-1420. http://dx.doi.org/10.4238/2013.April.26.3 Huang MD, Chen TL, Huang AH, et al (2013). Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol. 163: 1218-1229. http://dx.doi.org/10.1104/pp.113.225706 Huang YH, Colgrave ML, Daly NL, Keleshian A, et al (2009). The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284: 20699-20707. http://dx.doi.org/10.1074/jbc.M109.003384 Jensen WA (1962). Botanical histochemistry. In: Principles and practice (Freeman WH & Co, eds.) San Francisco, USA, 1-408. Kader JC, et al (1975). Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44. http://dx.doi.org/10.1016/0005-2760(75)90042-9 Lei L, Chen L, Shi X, Li Y, et al (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 164: 1045-1058. http://dx.doi.org/10.1104/pp.113.232637 Liu F, Zhang X, Lu C, Zeng X, et al (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 66: 5663-5681. http://dx.doi.org/10.1093/jxb/erv313 Maldonado AM, Doerner P, Dixon RA, Lamb CJ, et al (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403. http://dx.doi.org/10.1038/nature00962 Matiello JB (2005). Cultura de café no Brasil, Novo Manual de recomendações. Rio de Janeiro: MAPA/Procafé; Fundação Procafé, Varginha. Mello EO, Ribeiro SF, Carvalho AO, Santos IS, et al (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62: 1209-1217. http://dx.doi.org/10.1007/s00284-010-9847-3 Moulin MM, Rodrigues R, Ribeiro SF, Gonçalves LS, et al (2014). Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 13: 9229-9243. http://dx.doi.org/10.4238/2014.November.7.10 Muñoz A, Marcos JF, Read ND, et al (2012). Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol. 85: 89-106. http://dx.doi.org/10.1111/j.1365-2958.2012.08091.x Pagnussat LA, Lombardo C, Regente M, Pinedo M, et al (2009). Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 166: 797-806. http://dx.doi.org/10.1016/j.jplph.2008.11.005 Regente MC, Giudici AM, Villalaín J, de la Canal L, et al (2005). The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40: 183-189. http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x Ribeiro SF, Silva MS, Da Cunha M, Carvalho AO, et al (2012). Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek 101: 657-670. http://dx.doi.org/10.1007/s10482-011-9683-x Santos IS, Da Cunha M, Machado OLT, Gomes VM, et al (2004). A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 167: 1203-1210. http://dx.doi.org/10.1016/j.plantsci.2004.04.021 Schägger H, von Jagow G, et al (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2 Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7 Tamm L, Thürig B, Fliessbach A, Goltlieb AE, et al (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagening. J. Life Sci. 58: 131-137. http://dx.doi.org/10.1016/j.njas.2011.01.001 Taveira GB, Mathias LS, da Motta OV, Machado OL, et al (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39. http://dx.doi.org/10.1002/bip.22351 Teixeira V, Feio MJ, Bastos M, et al (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177. http://dx.doi.org/10.1016/j.plipres.2011.12.005 Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, et al (1992). In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 100: 1055-1058. http://dx.doi.org/10.1104/pp.100.2.1055 Thevissen K, Terras FR, Broekaert WF, et al (1999). Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. Tian A, Jiang J, Cao J, et al (2013). Functional analysis of a novel male fertility lipid transfer protein gene in Brassica campestris ssp. chinensis. Plant Mol. Biol. Report. 31: 775-782. http://dx.doi.org/10.1007/s11105-012-0552-1 Tsuboi S, Osafune T, Tsugeki R, Nishimura M, et al (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500-508. Wang SY, Wu JH, Ng TB, Ye XY, et al (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810: 375-383. http://dx.doi.org/10.1016/j.bbagen.2010.12.002 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2013). An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim. Biophys. Acta 1830: 3509-3516. http://dx.doi.org/10.1016/j.bbagen.2013.03.007 Zottich UP (2012). Peptídeos de sementes de Coffea canephora: purificação e caracterização das atividades antimicrobianas e inseticidas. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes.
G. C. V. Bard, Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., Gomes, V. M., Bard, G. C. V., Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., and Gomes, V. M., Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS This study forms part of G.C.V. Bard’s DSc degree thesis and was carried out at Universidade Estadual do Norte Fluminense. Research supported by CNPq, FAPERJ, and CAPES through the CAPES/Toxicology project. We wish to thank L.C.D. Souza and V.M. Kokis for technical assistance. REFERENCES Aerts AM, François IE, Meert EM, Li QT, et al (2007). The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13: 243-247. http://dx.doi.org/10.1159/000104753 Benko-Iseppon AM, Galdino SL, Calsa TJrKidoEA, et al (2010). Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci. 11: 181-188. http://dx.doi.org/10.2174/138920310791112075 Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J, et al (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69: 55-59. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04174.x Cameron KD, Teece MA, Smart LB, et al (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. http://dx.doi.org/10.1104/pp.105.069724 Carvalho AO, Teodoro CES, Cunha MD, Okorokova-Façanha AL, et al (2004). Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol. Plant. 122: 328-336. http://dx.doi.org/10.1111/j.1399-3054.2004.00413.x Carvalho AdeO, Gomes VM, et al (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144-1153. http://dx.doi.org/10.1016/j.peptides.2007.03.004 Filho RL, Romero RS, et al (2009). Sensibilidade de Xanthamonas vesicatoria a antibióticos para desenvolvimento de um meio semi-seletivo. Rer. Trop. –. Cienc. Agr. Biol. 3: 28-39. Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, et al (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 142: 233-246. http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x Domínguez E, Heredia-Guerrero JA, Heredia A, et al (2015). Plant cutin genesis: unanswered questions. Trends Plant Sci. 20: 551-558. http://dx.doi.org/10.1016/j.tplants.2015.05.009 Dubreil L, Méliande S, Chiron H, Compoint JP, et al (1998). Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem. 75: 222-229. http://dx.doi.org/10.1094/CCHEM.1998.75.2.222 Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV, et al (2005). Diversity of wheat anti-microbial peptides. Peptides 26: 2064-2073. http://dx.doi.org/10.1016/j.peptides.2005.03.007 Gonçalves LS, Rodrigues R, Diz MS, Robaina RR, et al (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genet. Mol. Res. 12: 1411-1420. http://dx.doi.org/10.4238/2013.April.26.3 Huang MD, Chen TL, Huang AH, et al (2013). Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol. 163: 1218-1229. http://dx.doi.org/10.1104/pp.113.225706 Huang YH, Colgrave ML, Daly NL, Keleshian A, et al (2009). The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284: 20699-20707. http://dx.doi.org/10.1074/jbc.M109.003384 Jensen WA (1962). Botanical histochemistry. In: Principles and practice (Freeman WH & Co, eds.) San Francisco, USA, 1-408. Kader JC, et al (1975). Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44. http://dx.doi.org/10.1016/0005-2760(75)90042-9 Lei L, Chen L, Shi X, Li Y, et al (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 164: 1045-1058. http://dx.doi.org/10.1104/pp.113.232637 Liu F, Zhang X, Lu C, Zeng X, et al (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 66: 5663-5681. http://dx.doi.org/10.1093/jxb/erv313 Maldonado AM, Doerner P, Dixon RA, Lamb CJ, et al (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403. http://dx.doi.org/10.1038/nature00962 Matiello JB (2005). Cultura de café no Brasil, Novo Manual de recomendações. Rio de Janeiro: MAPA/Procafé; Fundação Procafé, Varginha. Mello EO, Ribeiro SF, Carvalho AO, Santos IS, et al (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62: 1209-1217. http://dx.doi.org/10.1007/s00284-010-9847-3 Moulin MM, Rodrigues R, Ribeiro SF, Gonçalves LS, et al (2014). Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 13: 9229-9243. http://dx.doi.org/10.4238/2014.November.7.10 Muñoz A, Marcos JF, Read ND, et al (2012). Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol. 85: 89-106. http://dx.doi.org/10.1111/j.1365-2958.2012.08091.x Pagnussat LA, Lombardo C, Regente M, Pinedo M, et al (2009). Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 166: 797-806. http://dx.doi.org/10.1016/j.jplph.2008.11.005 Regente MC, Giudici AM, Villalaín J, de la Canal L, et al (2005). The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40: 183-189. http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x Ribeiro SF, Silva MS, Da Cunha M, Carvalho AO, et al (2012). Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek 101: 657-670. http://dx.doi.org/10.1007/s10482-011-9683-x Santos IS, Da Cunha M, Machado OLT, Gomes VM, et al (2004). A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 167: 1203-1210. http://dx.doi.org/10.1016/j.plantsci.2004.04.021 Schägger H, von Jagow G, et al (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2 Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7 Tamm L, Thürig B, Fliessbach A, Goltlieb AE, et al (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagening. J. Life Sci. 58: 131-137. http://dx.doi.org/10.1016/j.njas.2011.01.001 Taveira GB, Mathias LS, da Motta OV, Machado OL, et al (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39. http://dx.doi.org/10.1002/bip.22351 Teixeira V, Feio MJ, Bastos M, et al (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177. http://dx.doi.org/10.1016/j.plipres.2011.12.005 Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, et al (1992). In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 100: 1055-1058. http://dx.doi.org/10.1104/pp.100.2.1055 Thevissen K, Terras FR, Broekaert WF, et al (1999). Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. Tian A, Jiang J, Cao J, et al (2013). Functional analysis of a novel male fertility lipid transfer protein gene in Brassica campestris ssp. chinensis. Plant Mol. Biol. Report. 31: 775-782. http://dx.doi.org/10.1007/s11105-012-0552-1 Tsuboi S, Osafune T, Tsugeki R, Nishimura M, et al (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500-508. Wang SY, Wu JH, Ng TB, Ye XY, et al (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810: 375-383. http://dx.doi.org/10.1016/j.bbagen.2010.12.002 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2013). An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim. Biophys. Acta 1830: 3509-3516. http://dx.doi.org/10.1016/j.bbagen.2013.03.007 Zottich UP (2012). Peptídeos de sementes de Coffea canephora: purificação e caracterização das atividades antimicrobianas e inseticidas. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes.