Publications

Found 1 results
Filters: Author is D.F. Ávila-Castillo  [Clear All Filters]
2016
I. V. Román-Fernández, Ávila-Castillo, D. F., Cerpa-Cruz, S., Gutiérrez-Ureña, S., Hernández-Bello, J., Padilla-Gutiérrez, J. R., Valle, Y., Ramírez-Dueñas, M. G., Pereira-Suárez, A. L., and Muñoz-Valle, J. F., CD40 functional gene polymorphisms and mRNA expression in rheumatoid arthritis patients from western Mexico, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by funding from the National Council of Science and Technology (CONACYT, grant #180663), CONACYT-México-Universidad de Guadalajara, awarded to J.F. Muñoz-Valle. The funding source had no involvement in any phase of the study. REFERENCESAletaha D, Neogi T, Silman AJ, Funovits J, et al (2010). 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62: 2569-2581. http://dx.doi.org/10.1002/art.27584 Arend WP, Firestein GS, et al (2012). Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat. Rev. Rheumatol. 8: 573-586. http://dx.doi.org/10.1038/nrrheum.2012.134 Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene)et al (2009). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41: 824-828. http://dx.doi.org/10.1038/ng.396 Blanco-Kelly F, Matesanz F, Alcina A, Teruel M, et al (2010). CD40: novel association with Crohn’s disease and replication in multiple sclerosis susceptibility. PLoS One 5: e11520. http://dx.doi.org/10.1371/journal.pone.0011520 Chen F, Hou S, Jiang Z, Chen Y, et al (2012). CD40 gene polymorphisms confer risk of Behcet’s disease but not of Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Rheumatology (Oxford) 51: 47-51. http://dx.doi.org/10.1093/rheumatology/ker345 Chen JM, Guo J, Wei CD, Wang CF, et al (2015). The association of CD40 polymorphisms with CD40 serum levels and risk of systemic lupus erythematosus. BMC Genet. 16: 121. http://dx.doi.org/10.1186/s12863-015-0279-8 Cho CS, Cho ML, Min SY, Kim WU, et al (2000). CD40 engagement on synovial fibroblast up-regulates production of vascular endothelial growth factor. J. Immunol. 164: 5055-5061. http://dx.doi.org/10.4049/jimmunol.164.10.5055 Chomczynski P, Sacchi N, et al (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. http://dx.doi.org/10.1016/0003-2697(87)90021-2 Elgueta R, Benson MJ, de Vries VC, Wasiuk A, et al (2009). Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229: 152-172. http://dx.doi.org/10.1111/j.1600-065X.2009.00782.x Field J, Shahijanian F, Schibeci S, Johnson L, Australia and New Zealand MS Genetics Consortium (ANZgene)et al (2015). The MS risk allele of CD40 is associated with reduced cell-membrane bound expression in antigen presenting cells: implications for gene function. PLoS One 10: e0127080. http://dx.doi.org/10.1371/journal.pone.0127080 García-Bermúdez M, González-Juanatey C, López-Mejías R, Teruel M, et al (2012). Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in Spanish rheumatoid arthritis patients. PLoS One 7: e49214. http://dx.doi.org/10.1371/journal.pone.0049214 Jacobson EM, Concepcion E, Oashi T, Tomer Y, et al (2005). A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146: 2684-2691. http://dx.doi.org/10.1210/en.2004-1617 Kim TY, Park YJ, Hwang JK, Song JY, et al (2003). A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves’ disease in Koreans. Thyroid 13: 919-925. http://dx.doi.org/10.1089/105072503322511319 Lee HY, Jeon HS, Song EK, Han MK, et al (2006). CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: evidence of NF-kappaB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum. 54: 1747-1758. http://dx.doi.org/10.1002/art.21873 Lee YH, Bae SC, Choi SJ, Ji JD, et al (2015). Associations between the functional CD40 rs4810485 G/T polymorphism and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Lupus 24: 1177-1183. http://dx.doi.org/10.1177/0961203315583543 Li M, Sun H, Liu S, Yu J, et al (2012). CD40 C/T-1 polymorphism plays different roles in Graves’ disease and Hashimoto’s thyroiditis: a meta-analysis. Endocr. J. 59: 1041-1050. http://dx.doi.org/10.1507/endocrj.EJ12-0126 Liu MF, Chao SC, Wang CR, Lei HY, et al (2001). Expression of CD40 and CD40 ligand among cell populations within rheumatoid synovial compartment. Autoimmunity 34: 107-113. http://dx.doi.org/10.3109/08916930109001958 Liu R, Xu N, Wang X, Shen L, et al (2012). Influence of MIF, CD40, and CD226 polymorphisms on risk of rheumatoid arthritis. Mol. Biol. Rep. 39: 6915-6922. http://dx.doi.org/10.1007/s11033-012-1518-y Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Martínez-Cortés G, Salazar-Flores J, Fernández-Rodríguez LG, Rubi-Castellanos R, et al (2012). Admixture and population structure in Mexican-Mestizos based on paternal lineages. J. Hum. Genet. 57: 568-574. http://dx.doi.org/10.1038/jhg.2012.67 McInnes IB, Schett G, et al (2011). The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365: 2205-2219. http://dx.doi.org/10.1056/NEJMra1004965 Miller SA, Dykes DD, Polesky HF, et al (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 Orozco G, Eyre S, Hinks A, Ke X, Wellcome Trust Case Control consortium YEAR Consortiumet al (2010). Association of CD40 with rheumatoid arthritis confirmed in a large UK case-control study. Ann. Rheum. Dis. 69: 813-816. http://dx.doi.org/10.1136/ard.2009.109579 Perricone C, Ceccarelli F, Valesini G, et al (2011). An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun. Rev. 10: 599-608. http://dx.doi.org/10.1016/j.autrev.2011.04.021 Peters AL, Stunz LL, Bishop GA, et al (2009). CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21: 293-300. http://dx.doi.org/10.1016/j.smim.2009.05.012 Raychaudhuri S, Remmers EF, Lee AT, Hackett R, et al (2008). Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40: 1216-1223. http://dx.doi.org/10.1038/ng.233 Reparon-Schuijt CC, van Esch WJ, van Kooten C, Schellekens GA, et al (2001). Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. 44: 41-47. http://dx.doi.org/10.1002/1529-0131(200101)44:1<41::AID-ANR6>3.0.CO;2-0 Schmittgen TD, Livak KJ, et al (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101-1108. http://dx.doi.org/10.1038/nprot.2008.73 Shuang C, Dalin L, Weiguang Y, Zhenkun F, et al (2011). Association of CD40 gene polymorphisms with sporadic breast cancer in Chinese Han women of Northeast China. PLoS One 6: e23762. http://dx.doi.org/10.1371/journal.pone.0023762 Sokolova EA, Malkova NA, Korobko DS, Rozhdestvenskii AS, et al (2013). Association of SNPs of CD40 gene with multiple sclerosis in Russians. PLoS One 8: e61032. http://dx.doi.org/10.1371/journal.pone.0061032 Suzuki A, Kochi Y, Okada Y, Yamamoto K, et al (2011). Insight from genome-wide association studies in rheumatoid arthritis and multiple sclerosis. FEBS Lett. 585: 3627-3632. http://dx.doi.org/10.1016/j.febslet.2011.05.025 Tomer Y, Concepcion E, Greenberg DA, et al (2002). A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 12: 1129-1135. http://dx.doi.org/10.1089/105072502321085234 Vazgiourakis VM, Zervou MI, Choulaki C, Bertsias G, et al (2011). A common SNP in the CD40 region is associated with systemic lupus erythematosus and correlates with altered CD40 expression: implications for the pathogenesis. Ann. Rheum. Dis. 70: 2184-2190. http://dx.doi.org/10.1136/ard.2010.146530 Wagner M, Sobczyński M, Bilińska M, Pokryszko-Dragan A, et al (2015). MS risk allele rs1883832T is associated with decreased mRNA expression of CD40. J. Mol. Neurosci. 56: 540-545. http://dx.doi.org/10.1007/s12031-015-0490-0 Wellcome Trust Case Control Consortiumet al (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661-678. http://dx.doi.org/10.1038/nature05911 Yi CQ, Ma CH, Xie ZP, Cao Y, et al (2013). Comparative genome-wide gene expression analysis of rheumatoid arthritis and osteoarthritis. Genet. Mol. Res. 12: 3136-3145. http://dx.doi.org/10.4238/2013.March.11.3