Publications

Found 1 results
Filters: Author is M. Sönmez  [Clear All Filters]
2016
H. Bardak, Gunay, M., Erçalık, Y., Bardak, Y., Ozbas, H., Bagci, O., Ayata, A., Sönmez, M., and Alagöz, C., Analysis of ELOVL4 and PRPH2 genes in Turkish Stargardt disease patients, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAgbaga MP, Mandal MN, Anderson RE, et al (2010). Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid Res. 51: 1624-1642. http://dx.doi.org/10.1194/jlr.R005025 Aldahmesh MA, Mohamed JY, Alkuraya HS, Verma IC, et al (2011). Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89: 745-750. http://dx.doi.org/10.1016/j.ajhg.2011.10.011 Ambasudhan R, Wang X, Jablonski MM, Thompson DA, et al (2004). Atrophic macular degeneration mutations in ELOVL4 result in the intracellular misrouting of the protein. Genomics 83: 615-625. http://dx.doi.org/10.1016/j.ygeno.2003.10.004 Bernstein PS, Tammur J, Singh N, Hutchinson A, et al (2001). Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest. Ophthalmol. Vis. Sci. 42: 3331-3336. Bocquet B, Lacroux A, Surget MO, Baudoin C, et al (2013). Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management. Ophthalmic Epidemiol. 20: 13-25. http://dx.doi.org/10.3109/09286586.2012.737890 Boon CJ, van Schooneveld MJ, den Hollander AI, van Lith-Verhoeven JJ, et al (2007). Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br. J. Ophthalmol. 91: 1504-1511. http://dx.doi.org/10.1136/bjo.2007.115659 Charbel Issa P, Barnard AR, Herrmann P, Washington I, et al (2015). Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc. Natl. Acad. Sci. USA 112: 8415-8420. http://dx.doi.org/10.1073/pnas.1506960112 Coco RM, Tellería JJ, Sanabria MR, Rodríguez-Rúa E, et al (2010). PRPH2 (Peripherin/RDS) mutations associated with different macular dystrophies in a Spanish population: a new mutation. Eur. J. Ophthalmol. 20: 724-732. Fox BG, Shanklin J, Ai J, Loehr TM, et al (1994). Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry 33: 12776-12786. http://dx.doi.org/10.1021/bi00209a008 Franceschetti A, François J, et al (1965). [Fundus flavimaculatus]. Arch. Ophtalmol. Rev. Gen. Ophtalmol. 25: 505-530. Grayson C, Molday RS, et al (2005). Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J. Biol. Chem. 280: 32521-32530. http://dx.doi.org/10.1074/jbc.M503411200 Karan G, Yang Z, Howes K, Zhao Y, et al (2005). Loss of ER retention and sequestration of the wild-type ELOVL4 by Stargardt disease dominant negative mutants. Mol. Vis. 11: 657-664. Lagali PS, Liu J, Ambasudhan R, Kakuk LE, et al (2003). Evolutionarily conserved ELOVL4 gene expression in the vertebrate retina. Invest. Ophthalmol. Vis. Sci. 44: 2841-2850. http://dx.doi.org/10.1167/iovs.02-0991 Lai Z, Zhang XN, Zhou W, Yu R, et al (2005). Evaluation of the ELOVL4 gene in a Chinese family with autosomal dominant STGD3-like macular dystrophy. J. Cell. Mol. Med. 9: 961-965. http://dx.doi.org/10.1111/j.1582-4934.2005.tb00392.x Li W, Chen Y, Cameron DJ, Wang C, et al (2007). Elovl4 haploinsufficiency does not induce early onset retinal degeneration in mice. Vision Res. 47: 714-722. http://dx.doi.org/10.1016/j.visres.2006.10.023 Mandal MN, Ambasudhan R, Wong PW, Gage PJ, et al (2004). Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics 83: 626-635. http://dx.doi.org/10.1016/j.ygeno.2003.09.020 Maugeri A, Meire F, Hoyng CB, Vink C, et al (2004). A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest. Ophthalmol. Vis. Sci. 45: 4263-4267. http://dx.doi.org/10.1167/iovs.04-0078 McMahon A, Butovich IA, Mata NL, Klein M, et al (2007). Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol. Vis. 13: 258-272. Oldani M, Marchi S, Giani A, Cecchin S, et al (2012). Clinical and molecular genetic study of 12 Italian families with autosomal recessive Stargardt disease. Genet. Mol. Res. 11: 4342-4350. http://dx.doi.org/10.4238/2012.October.9.3 Raz-Prag D, Ayyagari R, Fariss RN, Mandal MN, et al (2006). Haploinsufficiency is not the key mechanism of pathogenesis in a heterozygous Elovl4 knockout mouse model of STGD3 disease. Invest. Ophthalmol. Vis. Sci. 47: 3603-3611. http://dx.doi.org/10.1167/iovs.05-1527 September AV, Vorster AA, Ramesar RS, Greenberg LJ, et al (2004). Mutation spectrum and founder chromosomes for the ABCA4 gene in South African patients with Stargardt disease. Invest. Ophthalmol. Vis. Sci. 45: 1705-1711. http://dx.doi.org/10.1167/iovs.03-1167 Shanklin J, Somerville C, et al (1991). Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA 88: 2510-2514. http://dx.doi.org/10.1073/pnas.88.6.2510 Shanklin J, Whittle E, Fox BG, et al (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33: 12787-12794. http://dx.doi.org/10.1021/bi00209a009 Strom SP, Gao YQ, Martinez A, Ortube C, et al (2012). Molecular diagnosis of putative Stargardt Disease probands by exome sequencing. BMC Med. Genet. 13: 67. http://dx.doi.org/10.1186/1471-2350-13-67 Suzuki M, Hayakawa T, Shaw JP, Rekik M, et al (1991). Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173: 1690-1695. Vasireddy V, Vijayasarathy C, Huang J, Wang XF, et al (2005). Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol. Vis. 11: 665-676. Vasireddy V, Jablonski MM, Mandal MN, Raz-Prag D, et al (2006). Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 47: 4558-4568. http://dx.doi.org/10.1167/iovs.06-0353 Vasireddy V, Uchida Y, Salem NJrKimSY, et al (2007). Loss of functional ELOVL4 depletes very long-chain fatty acids (> or =C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16: 471-482. http://dx.doi.org/10.1093/hmg/ddl480 Walia S, Fishman GA, et al (2009). Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 30: 63-68. http://dx.doi.org/10.1080/13816810802695550 Weleber RG, et al (1994). Stargardt’s macular dystrophy. Arch. Ophthalmol. 112: 752-754. http://dx.doi.org/10.1001/archopht.1994.01090180050033 Yang Z, Chen Y, Lillo C, Chien J, et al (2008). Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J. Clin. Invest. 118: 2908-2916. Yi J, Li S, Jia X, Xiao X, et al (2012). Evaluation of the ELOVL4, PRPH2 and ABCA4 genes in patients with Stargardt macular degeneration. Mol. Med. Rep. 6: 1045-1049. Zaneveld J, Siddiqui S, Li H, Wang X, et al (2015). Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions. Genet. Med. 17: 262-270. http://dx.doi.org/10.1038/gim.2014.174 Zhang K, Kniazeva M, Han M, Li W, et al (2001). A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 27: 89-93. http://dx.doi.org/10.1038/84765 Zhang XM, Yang Z, Karan G, Hashimoto T, et al (2003). Elovl4 mRNA distribution in the developing mouse retina and phylogenetic conservation of Elovl4 genes. Mol. Vis. 9: 301-307. Zernant J, Schubert C, Im KM, Burke T, et al (2011). Analysis of the ABCA4 gene by next-generation sequencing. Invest. Ophthalmol. Vis. Sci. 52: 8479-8487. http://dx.doi.org/10.1167/iovs.11-8182