Publications

Found 2 results
Filters: Author is M. Gunay  [Clear All Filters]
2016
H. Bardak, Gunay, M., Erçalık, Y., Bardak, Y., Ozbas, H., Bagci, O., Ayata, A., Sönmez, M., and Alagöz, C., Analysis of ELOVL4 and PRPH2 genes in Turkish Stargardt disease patients, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAgbaga MP, Mandal MN, Anderson RE, et al (2010). Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid Res. 51: 1624-1642. http://dx.doi.org/10.1194/jlr.R005025 Aldahmesh MA, Mohamed JY, Alkuraya HS, Verma IC, et al (2011). Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89: 745-750. http://dx.doi.org/10.1016/j.ajhg.2011.10.011 Ambasudhan R, Wang X, Jablonski MM, Thompson DA, et al (2004). Atrophic macular degeneration mutations in ELOVL4 result in the intracellular misrouting of the protein. Genomics 83: 615-625. http://dx.doi.org/10.1016/j.ygeno.2003.10.004 Bernstein PS, Tammur J, Singh N, Hutchinson A, et al (2001). Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest. Ophthalmol. Vis. Sci. 42: 3331-3336. Bocquet B, Lacroux A, Surget MO, Baudoin C, et al (2013). Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management. Ophthalmic Epidemiol. 20: 13-25. http://dx.doi.org/10.3109/09286586.2012.737890 Boon CJ, van Schooneveld MJ, den Hollander AI, van Lith-Verhoeven JJ, et al (2007). Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br. J. Ophthalmol. 91: 1504-1511. http://dx.doi.org/10.1136/bjo.2007.115659 Charbel Issa P, Barnard AR, Herrmann P, Washington I, et al (2015). Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc. Natl. Acad. Sci. USA 112: 8415-8420. http://dx.doi.org/10.1073/pnas.1506960112 Coco RM, Tellería JJ, Sanabria MR, Rodríguez-Rúa E, et al (2010). PRPH2 (Peripherin/RDS) mutations associated with different macular dystrophies in a Spanish population: a new mutation. Eur. J. Ophthalmol. 20: 724-732. Fox BG, Shanklin J, Ai J, Loehr TM, et al (1994). Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry 33: 12776-12786. http://dx.doi.org/10.1021/bi00209a008 Franceschetti A, François J, et al (1965). [Fundus flavimaculatus]. Arch. Ophtalmol. Rev. Gen. Ophtalmol. 25: 505-530. Grayson C, Molday RS, et al (2005). Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J. Biol. Chem. 280: 32521-32530. http://dx.doi.org/10.1074/jbc.M503411200 Karan G, Yang Z, Howes K, Zhao Y, et al (2005). Loss of ER retention and sequestration of the wild-type ELOVL4 by Stargardt disease dominant negative mutants. Mol. Vis. 11: 657-664. Lagali PS, Liu J, Ambasudhan R, Kakuk LE, et al (2003). Evolutionarily conserved ELOVL4 gene expression in the vertebrate retina. Invest. Ophthalmol. Vis. Sci. 44: 2841-2850. http://dx.doi.org/10.1167/iovs.02-0991 Lai Z, Zhang XN, Zhou W, Yu R, et al (2005). Evaluation of the ELOVL4 gene in a Chinese family with autosomal dominant STGD3-like macular dystrophy. J. Cell. Mol. Med. 9: 961-965. http://dx.doi.org/10.1111/j.1582-4934.2005.tb00392.x Li W, Chen Y, Cameron DJ, Wang C, et al (2007). Elovl4 haploinsufficiency does not induce early onset retinal degeneration in mice. Vision Res. 47: 714-722. http://dx.doi.org/10.1016/j.visres.2006.10.023 Mandal MN, Ambasudhan R, Wong PW, Gage PJ, et al (2004). Characterization of mouse orthologue of ELOVL4: genomic organization and spatial and temporal expression. Genomics 83: 626-635. http://dx.doi.org/10.1016/j.ygeno.2003.09.020 Maugeri A, Meire F, Hoyng CB, Vink C, et al (2004). A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest. Ophthalmol. Vis. Sci. 45: 4263-4267. http://dx.doi.org/10.1167/iovs.04-0078 McMahon A, Butovich IA, Mata NL, Klein M, et al (2007). Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol. Vis. 13: 258-272. Oldani M, Marchi S, Giani A, Cecchin S, et al (2012). Clinical and molecular genetic study of 12 Italian families with autosomal recessive Stargardt disease. Genet. Mol. Res. 11: 4342-4350. http://dx.doi.org/10.4238/2012.October.9.3 Raz-Prag D, Ayyagari R, Fariss RN, Mandal MN, et al (2006). Haploinsufficiency is not the key mechanism of pathogenesis in a heterozygous Elovl4 knockout mouse model of STGD3 disease. Invest. Ophthalmol. Vis. Sci. 47: 3603-3611. http://dx.doi.org/10.1167/iovs.05-1527 September AV, Vorster AA, Ramesar RS, Greenberg LJ, et al (2004). Mutation spectrum and founder chromosomes for the ABCA4 gene in South African patients with Stargardt disease. Invest. Ophthalmol. Vis. Sci. 45: 1705-1711. http://dx.doi.org/10.1167/iovs.03-1167 Shanklin J, Somerville C, et al (1991). Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA 88: 2510-2514. http://dx.doi.org/10.1073/pnas.88.6.2510 Shanklin J, Whittle E, Fox BG, et al (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33: 12787-12794. http://dx.doi.org/10.1021/bi00209a009 Strom SP, Gao YQ, Martinez A, Ortube C, et al (2012). Molecular diagnosis of putative Stargardt Disease probands by exome sequencing. BMC Med. Genet. 13: 67. http://dx.doi.org/10.1186/1471-2350-13-67 Suzuki M, Hayakawa T, Shaw JP, Rekik M, et al (1991). Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173: 1690-1695. Vasireddy V, Vijayasarathy C, Huang J, Wang XF, et al (2005). Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol. Vis. 11: 665-676. Vasireddy V, Jablonski MM, Mandal MN, Raz-Prag D, et al (2006). Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 47: 4558-4568. http://dx.doi.org/10.1167/iovs.06-0353 Vasireddy V, Uchida Y, Salem NJrKimSY, et al (2007). Loss of functional ELOVL4 depletes very long-chain fatty acids (> or =C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16: 471-482. http://dx.doi.org/10.1093/hmg/ddl480 Walia S, Fishman GA, et al (2009). Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 30: 63-68. http://dx.doi.org/10.1080/13816810802695550 Weleber RG, et al (1994). Stargardt’s macular dystrophy. Arch. Ophthalmol. 112: 752-754. http://dx.doi.org/10.1001/archopht.1994.01090180050033 Yang Z, Chen Y, Lillo C, Chien J, et al (2008). Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J. Clin. Invest. 118: 2908-2916. Yi J, Li S, Jia X, Xiao X, et al (2012). Evaluation of the ELOVL4, PRPH2 and ABCA4 genes in patients with Stargardt macular degeneration. Mol. Med. Rep. 6: 1045-1049. Zaneveld J, Siddiqui S, Li H, Wang X, et al (2015). Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions. Genet. Med. 17: 262-270. http://dx.doi.org/10.1038/gim.2014.174 Zhang K, Kniazeva M, Han M, Li W, et al (2001). A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 27: 89-93. http://dx.doi.org/10.1038/84765 Zhang XM, Yang Z, Karan G, Hashimoto T, et al (2003). Elovl4 mRNA distribution in the developing mouse retina and phylogenetic conservation of Elovl4 genes. Mol. Vis. 9: 301-307. Zernant J, Schubert C, Im KM, Burke T, et al (2011). Analysis of the ABCA4 gene by next-generation sequencing. Invest. Ophthalmol. Vis. Sci. 52: 8479-8487. http://dx.doi.org/10.1167/iovs.11-8182  
H. Bardak, Gunay, M., Yildiz, E., Bardak, Y., Gunay, B., Ozbas, H., and Bagci, O., Novel visual system homeobox 1 gene mutations in Turkish patients with keratoconus, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAbu-Amero KK, Kalantan H, Al-Muammar AM, et al (2011). Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol. Vis. 17: 667-672. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, et al (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7: 248-249. http://dx.doi.org/10.1038/nmeth0410-248 Arnal E, Peris-Martínez C, Menezo JL, Johnsen-Soriano S, et al (2011). Oxidative stress in keratoconus? Invest. Ophthalmol. Vis. Sci. 52: 8592-8597. http://dx.doi.org/10.1167/iovs.11-7732 Atilano SR, Coskun P, Chwa M, Jordan N, et al (2005). Accumulation of mitochondrial DNA damage in keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 46: 1256-1263. http://dx.doi.org/10.1167/iovs.04-1395 Bamshad MJ, Ng SB, Bigham AW, Tabor HK, et al (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12: 745-755. http://dx.doi.org/10.1038/nrg3031 Bick D, Dimmock D, et al (2011). Whole exome and whole genome sequencing. Curr. Opin. Pediatr. 23: 594-600. http://dx.doi.org/10.1097/MOP.0b013e32834b20ec Christensen AE, Knappskog PM, Midtbø M, Gjesdal CG, et al (2010). Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene. Invest. Ophthalmol. Vis. Sci. 51: 47-52. http://dx.doi.org/10.1167/iovs.09-4251 Cornes BK, Khor CC, Nongpiur ME, Xu L, et al (2012). Identification of four novel variants that influence central corneal thickness in multi-ethnic Asian populations. Hum. Mol. Genet. 21: 437-445. http://dx.doi.org/10.1093/hmg/ddr463 Cuellar-Partida G, Springelkamp H, Lucas SE, Yazar S, et al (2015). WNT10A exonic variant increases the risk of keratoconus by decreasing corneal thickness. Hum. Mol. Genet. 24: 5060-5068. http://dx.doi.org/10.1093/hmg/ddv211 Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ, et al (2014). The pathogenesis of keratoconus. Eye (Lond.) 28: 189-195. http://dx.doi.org/10.1038/eye.2013.278 De Bonis P, Laborante A, Pizzicoli C, Stallone R, et al (2011). Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus. Mol. Vis. 17: 2482-2494. Ertan A, Muftuoglu O, et al (2008). Keratoconus clinical findings according to different age and gender groups. Cornea 27: 1109-1113. http://dx.doi.org/10.1097/ICO.0b013e31817f815a Gajecka M, Radhakrishna U, Winters D, Nath SK, et al (2009). Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest. Ophthalmol. Vis. Sci. 50: 1531-1539. http://dx.doi.org/10.1167/iovs.08-2173 Georgiou T, Funnell CL, Cassels-Brown A, O’Conor R, et al (2004). Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye (Lond.) 18: 379-383. http://dx.doi.org/10.1038/sj.eye.6700652 Gomes JA, Tan D, Rapuano CJ, Belin MW, Group of Panelists for the Global Delphi Panel of Keratoconus and Ectatic Diseaseset al (2015). Global consensus on keratoconus and ectatic diseases. Cornea 34: 359-369. http://dx.doi.org/10.1097/ICO.0000000000000408 Hayashi T, Huang J, Deeb SS, et al (2000). RINX(VSX1), a novel homeobox gene expressed in the inner nuclear layer of the adult retina. Genomics 67: 128-139. http://dx.doi.org/10.1006/geno.2000.6248 Héon E, Greenberg A, Kopp KK, Rootman D, et al (2002). VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum. Mol. Genet. 11: 1029-1036. http://dx.doi.org/10.1093/hmg/11.9.1029 Jeoung JW, Kim MK, Park SS, Kim SY, et al (2012). VSX1 gene and keratoconus: genetic analysis in Korean patients. Cornea 31: 746-750. http://dx.doi.org/10.1097/ICO.0b013e3181e16dd0 Kymes SM, Walline JJ, Zadnik K, Sterling J, Collaborative Longitudinal Evaluation of Keratoconus Study Groupet al (2008). Changes in the quality-of-life of people with keratoconus. Am. J. Ophthalmol. 145: 611-617. http://dx.doi.org/10.1016/j.ajo.2007.11.017 Lema I, Durán JA, et al (2005). Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 112: 654-659. http://dx.doi.org/10.1016/j.ophtha.2004.11.050 Li X, Bykhovskaya Y, Haritunians T, Siscovick D, et al (2012). A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. Hum. Mol. Genet. 21: 421-429. http://dx.doi.org/10.1093/hmg/ddr460 Liskova P, Ebenezer ND, Hysi PG, Gwilliam R, et al (2007). Molecular analysis of the VSX1 gene in familial keratoconus. Mol. Vis. 13: 1887-1891. Lv YP, Yao WJ, Chen J, Bao BL, et al (2015). Newly identified gene muscle segment homeobox C may play a role in intermuscular bone development of Hemibarbus labeo. Genet. Mol. Res. 14: 11324-11334. http://dx.doi.org/10.4238/2015.September.22.26 Matthews FJ, Cook SD, Majid MA, Dick AD, et al (2007). Changes in the balance of the tissue inhibitor of matrix metalloproteinases (TIMPs)-1 and -3 may promote keratocyte apoptosis in keratoconus. Exp. Eye Res. 84: 1125-1134. http://dx.doi.org/10.1016/j.exer.2007.02.013 McGhee CN, et al (2009). 2008 Sir Norman McAlister Gregg Lecture: 150 years of practical observations on the conical cornea--what have we learned? Clin. Experiment. Ophthalmol. 37: 160-176. http://dx.doi.org/10.1111/j.1442-9071.2009.02009.x Mok JW, Baek SJ, Joo CK, et al (2008). VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J. Hum. Genet. 53: 842-849. http://dx.doi.org/10.1007/s10038-008-0319-6 Moreira LB, Bardal RA, Crisigiovanni LR, et al (2013). Contact lenses fitting after intracorneal ring segments implantation in keratoconus. Arq. Bras. Oftalmol. 76: 215-217. http://dx.doi.org/10.1590/S0004-27492013000400004 Ohtoshi A, Wang SW, Maeda H, Saszik SM, et al (2004). Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1. Curr. Biol. 14: 530-536. http://dx.doi.org/10.1016/j.cub.2004.02.027 Paliwal P, Tandon R, Dube D, Kaur P, et al (2011). Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus. Mol. Vis. 17: 481-485. Rabinowitz YS, et al (1998). Keratoconus. Surv. Ophthalmol. 42: 297-319. http://dx.doi.org/10.1016/S0039-6257(97)00119-7 Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS, et al (2010). Keratoconus: a review. Cont. Lens Anterior Eye 33: 157-166, quiz 205. http://dx.doi.org/10.1016/j.clae.2010.04.006 Saee-Rad S, Hashemi H, Miraftab M, Noori-Daloii MR, et al (2011). Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus. Mol. Vis. 17: 3128-3136. Schwarz JM, Cooper DN, Schuelke M, Seelow D, et al (2014). MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11: 361-362. http://dx.doi.org/10.1038/nmeth.2890 Semina EV, Mintz-Hittner HA, Murray JC, et al (2000). Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues. Genomics 63: 289-293. http://dx.doi.org/10.1006/geno.1999.6093 Shetty R, Nuijts RM, Nanaiah SG, Anandula VR, et al (2015). Two novel missense substitutions in the VSX1 gene: clinical and genetic analysis of families with Keratoconus from India. BMC Med. Genet. 16: 33-43. http://dx.doi.org/10.1186/s12881-015-0178-x Tanwar M, Kumar M, Nayak B, Pathak D, et al (2010). VSX1 gene analysis in keratoconus. Mol. Vis. 16: 2395-2401. Vincent AL, Jordan C, Sheck L, Niederer R, et al (2013). Screening the visual system homeobox 1 gene in keratoconus and posterior polymorphous dystrophy cohorts identifies a novel variant. Mol. Vis. 19: 852-860. Wang Y, Rabinowitz YS, Rotter JI, Yang H, et al (2000). Genetic epidemiological study of keratoconus: evidence for major gene determination. Am. J. Med. Genet. 93: 403-409. http://dx.doi.org/10.1002/1096-8628(20000828)93:5<403::AID-AJMG11>3.0.CO;2-A Watson T, Chow RL, et al (2011). Absence of Vsx1 expression in the normal and damaged mouse cornea. Mol. Vis. 17: 737-744. Wheeler J, Hauser MA, Afshari NA, Allingham RR, et al. (2012). The genetics of keratoconus: a review. Reprod. Syst. Sex Disord. (Suppl 6): 001.