Found 1 results
Filters: Author is Q.K. Xuan  [Clear All Filters]
K. Yu, Ji, Y., Wang, H., Xuan, Q. K., Li, B. B., Xiao, J. J., Sun, W., and Kong, X. Q., Association of miR-196a2, miR-27a, and miR-499 polymorphisms with isolated congenital heart disease in a Chinese population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by grants from the Priority Academic Program Development of Jiangsu Higher Education Institutions (grant #PAPD2014-2016). Dr. Wei Sun is an Assistant Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Dr. Xiangqing Kong is a Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine. REFERENCESBartel DP, et al (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233. Bruneau BG, et al (2008). The developmental genetics of congenital heart disease. Nature 451: 943-948. Callis TE, Pandya K, Seok HY, Tang RH, et al (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119: 2772-2786. Chan-Thomas PS, Thompson RP, Robert B, Yacoub MH, et al (1993). Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev. Dyn. 197: 203-216. Chen J, Wang DZ, et al (2012). microRNAs in cardiovascular development. J. Mol. Cell. Cardiol. 52: 949-957. Condorelli G, Latronico MV, Cavarretta E, et al (2014). microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol. 63: 2177-2187. Hoffman AE, Zheng T, Yi C, Leaderer D, et al (2009). microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69: 5970-5977. Hoffman JIe, et al (2013). The global burden of congenital heart disease. Cardiovasc. J. Afr. 24: 141-145. Hu Z, Liang J, Wang Z, Tian T, et al (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat. 30: 79-84. Kawasaki H, Taira K, et al (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf) 2004: 211-212. Lander ES, Linton LM, Birren B, Nusbaum C, International Human Genome Sequencing Consortiumet al (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. Lewis BP, Burge CB, Bartel DP, et al (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20. Li M, Li RJ, Bai H, Xiao P, et al (2016). Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population. Genet. Mol. Res. 15: . Mishra PJ, Bertino JR, et al (2009). MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10: 399-416. Nishi H, Ono K, Horie T, Nagao K, et al (2011). MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol. Cell. Biol. 31: 744-755. Patrushev LI, Kovalenko TF, et al (2014). Functions of noncoding sequences in mammalian genomes. Biochemistry (Mosc.) 79: 1442-1469. Ryan BM, Robles AI, Harris CC, et al (2010). Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10: 389-402. Saunders MA, Liang H, Li WH, et al (2007). Human polymorphism at microRNAs and microRNA target sites. Proc. Natl. Acad. Sci. USA 104: 3300-3305. Schonrock N, Harvey RP, Mattick JS, et al (2012). Long noncoding RNAs in cardiac development and pathophysiology. Circ. Res. 111: 1349-1362. Sluijter JP, van Mil A, van Vliet P, Metz CH, et al (2010). MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler. Thromb. Vasc. Biol. 30: 859-868. Srivastava D, et al (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126: 1037-1048. Sun Q, Gu H, Zeng Y, Xia Y, et al (2010). Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci. 101: 2241-2247. Tanzer A, Amemiya CT, Kim CB, Stadler PF, et al (2005). Evolution of microRNAs located within Hox gene clusters. J. Exp. Zoolog. B Mol. Dev. Evol. 304: 75-85. Wang N, Tian ZQ, Li Y, Zhou RM, et al (2013). An A/G polymorphism rs3746444 in miR-499 is associated with increased cancer risk: a meta-analysis. Genet. Mol. Res. 12: 3955-3964. Wu M, Jolicoeur N, Li Z, Zhang L, et al (2008). Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29: 1710-1716. Xu J, Hu Z, Xu Z, Gu H, et al (2009). Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30: 1231-1236. Yu ZB, Han SP, Chen X, Sun XF, et al (2014). Systematic review of the prevalence of perinatal congenital heart disease. Chinese Journal of Evidence Based Pediatrics 9: 252-259. Zeng Y, Yi R, Cullen BR, et al (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24: 138-148. Zhang Y, Jin SQ, Li WX, Gao GQ, et al (2016). Association between RNF41 gene c.-206 T > A genetic polymorphism and risk of congenital heart diseases in the Chinese Mongolian population. Genet. Mol. Res. 15: .