Publications

Found 2 results
Filters: Author is C.A.P. Garbossa  [Clear All Filters]
2016
A. D. B. Melo, Silveira, H., Bortoluzzi, C., Lara, L. J., Garbossa, C. A. P., Preis, G., Costa, L. B., and Rostagno, M. H., Intestinal alkaline phosphatase and sodium butyrate may be beneficial in attenuating LPS-induced intestinal inflammation, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEGMENTSAntonio Diego Brandão Melo thanks the Science Without Borders Program (CNPq) from the Brazilian government for financing his internship at Purdue University. The authors also would like to thank the Purdue University and Pontifícia Universidade Católica do Paraná (PUCPR) for funding this study. REFERENCESBaeuerle PA, Henkel T, et al (1994). Function and activation of NF-κ B in the immune system. Annu. Rev. Immunol. 12: 141-179. http://dx.doi.org/10.1146/annurev.iy.12.040194.001041 Bahar B, O’Doherty JV, Hayes M, Sweeney T, et al (2012). Extracts of brown seaweeds can attenuate the bacterial lipopolysaccharide-induced pro-inflammatory response in the porcine colon ex vivo. J. Anim. Sci. 90 (Suppl 4): 46-48. http://dx.doi.org/10.2527/jas.53944 Barbosa LCA, Demuner AJ, Clemente AD, et al (2007). Seasonal variation in the composition of volatile oils from Schinus terebinthifolius Raddi. Quim. Nova 30: 1959-1965. http://dx.doi.org/10.1590/S0100-40422007000800030 Bates JM, Akerlund J, Mittge E, Guillemin K, et al (2007). Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2: 371-382. http://dx.doi.org/10.1016/j.chom.2007.10.010 Basso K, Gomes F, Bracarense AP, et al (2013). Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. Toxins (Basel) 5: 2341-2352. http://dx.doi.org/10.3390/toxins5122341 Bendaoud H, Romdhane M, Souchard JP, Cazaux S, et al (2010). Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J. Food Sci. 75: C466-C472. http://dx.doi.org/10.1111/j.1750-3841.2010.01711.x Berkes J, Viswanathan VK, Savkovic SD, Hecht G, et al (2003). Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52: 439-451. http://dx.doi.org/10.1136/gut.52.3.439 Bol-Schoenmakers M, Fiechter D, Raaben W, Hassing I, et al (2010). Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur. J. Pharmacol. 633: 71-77. http://dx.doi.org/10.1016/j.ejphar.2010.01.023 Bortoluzzi C, Menten JFM, Silveira H, Melo ADB, et al (2016). Hops β-acids (Humulus lupulus) decrease intestinal gene expression of proinflammatory cytokines in an ex vivo model. J. Appl. Poult. Res. 25: 1-6. http://dx.doi.org/10.3382/japr/pfw001 Canani RB, Costanzo MD, Leone L, Pedata M, et al (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 17: 1519-1528. http://dx.doi.org/10.3748/wjg.v17.i12.1519 Carlini EA, Duarte-Almeida JM, Rodrigues E, Tabach R, et al (2010). Antiulcer effect of the pepper trees Schinus terebinthifolius Raddi (aroeira-da-praia) and Myracrodruon urundeuva Allemão, Anacardiaceae (aroeira-do-sertão). Rev. Bras. Farmacogn. 20: 140-146. http://dx.doi.org/10.1590/S0102-695X2010000200001 Carvalho MG, Melo AGN, Aragão CFS, Raffin FN, et al (2013). Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Rev. Bras. Plant. Med. 15: 158-169. http://dx.doi.org/10.1590/S1516-05722013000100022 Chen KT, Malo MS, Moss AK, Zeller S, et al (2010). Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G467-G475. http://dx.doi.org/10.1152/ajpgi.00364.2009 Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, et al (2011). A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig. Dis. Sci. 56: 1020-1027. http://dx.doi.org/10.1007/s10620-010-1396-x da Silva EO, Gerez JR, Drape TC, Bracarense APFRL, et al (2014). Phytic acid decreases deoxynivalenol and fumonisin B1- induced changes on swine jejunal explants. Toxicol. Rep. 1: 284-292. http://dx.doi.org/10.1016/j.toxrep.2014.05.001 de Lima MR, de Souza Luna J, dos Santos AF, de Andrade MC, et al (2006). Anti-bacterial activity of some Brazilian medicinal plants. J. Ethnopharmacol. 105: 137-147. http://dx.doi.org/10.1016/j.jep.2005.10.026 de Los Santos T, Diaz-San Segundo F, Grubman MJ, et al (2007). Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J. Virol. 81: 12803-12815. http://dx.doi.org/10.1128/JVI.01467-07 Fei XJ, Zhu LL, Xia LM, Peng WB, et al (2014). Acanthopanax senticosus attenuates inflammation in lipopolysaccharide-induced acute lung injury by inhibiting the NF-κB pathway. Genet. Mol. Res. 13: 10537-10544. http://dx.doi.org/10.4238/2014.December.12.16 Gois FD, Cairo PLG, Cantarelli VS, Costa LCB, et al (2016). Effect of Brazilian red pepper (Schinus terebinthifolius Raddi) essential oil on performance, diarrhea and gut health of weanling pigs. Livest. Sci. 183: 24-27. http://dx.doi.org/10.1016/j.livsci.2015.11.009 Goldberg RF, Austen WGJrZhangX, Munene G, et al (2008). Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc. Natl. Acad. Sci. USA 105: 3551-3556. http://dx.doi.org/10.1073/pnas.0712140105 Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, et al (2000). The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118: 724-734. http://dx.doi.org/10.1016/S0016-5085(00)70142-9 Islam Z, Pestka JJ, et al (2006). LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol. Appl. Pharmacol. 211: 53-63. http://dx.doi.org/10.1016/j.taap.2005.04.031 Jang IS, Ko YH, Kang SY, Lee CY, et al (2007). Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Technol. 134: 304-315. http://dx.doi.org/10.1016/j.anifeedsci.2006.06.009 Juhás S, Cikos S, Czikková S, Veselá J, et al (2008). Effects of borneol and thymoquinone on TNBS-induced colitis in mice. Folia Biol. (Praha) 54: 1-7. Koyama I, Matsunaga T, Harada T, Hokari S, et al (2002). Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin. Biochem. 35: 455-461. http://dx.doi.org/10.1016/S0009-9120(02)00330-2 Lackeyram D, Yang C, Archbold T, Swanson KC, et al (2010). Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J. Nutr. 140: 461-468. http://dx.doi.org/10.3945/jn.109.117267 Lange CFM, Pluske J, Gong J, Nyachoti CM, et al (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 134: 124-134. http://dx.doi.org/10.1016/j.livsci.2010.06.117 Leonard SG, Sweeney T, Bahar B, O’Doherty JV, et al (2012). Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. J. Anim. Sci. 90: 505-514. http://dx.doi.org/10.2527/jas.2010-3243 Levkut M, Marcin A, Vieira R, Lenhardt L, et al (2011). Influence of oregano extract on the intestine, some plasma parameters and growth performance in chickens. Acta Vet. 61: 215-225. http://dx.doi.org/10.2298/AVB1103215L Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Malo MS, Biswas S, Abedrapo MA, Yeh L, et al (2006). The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol. 25: 684-695. http://dx.doi.org/10.1089/dna.2006.25.684 Malo MS, Moaven O, Muhammad N, Biswas B, et al (2014). Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am. J. Physiol. Gastrointest. Liver Physiol. 306: G826-G838. http://dx.doi.org/10.1152/ajpgi.00357.2013 Martínez-Moya P, Ortega-González M, González R, Anzola A, et al (2012). Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol. Res. 66: 144-153. http://dx.doi.org/10.1016/j.phrs.2012.04.006 Prakash UN, Srinivasan K, et al (2010). Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br. J. Nutr. 104: 31-39. http://dx.doi.org/10.1017/S0007114510000334 Roura E, Koopmans SJ, Lallès JP, Le Huerou-Luron I, et al (2016). Critical review evaluating the pig as a model for human nutritional physiology. Nutr. Res. Rev. 29: 60-90. http://dx.doi.org/10.1017/S0954422416000020 Smith AG, O’Doherty JV, Reilly P, Ryan MT, et al (2011). The effects of laminarin derived from Laminaria digitata on measurements of gut health: selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. Br. J. Nutr. 105: 669-677. http://dx.doi.org/10.1017/S0007114510004277 Sussman NL, Eliakim R, Rubin D, Perlmutter DH, et al (1989). Intestinal alkaline phosphatase is secreted bidirectionally from villous enterocytes. Am. J. Physiol. 257: G14-G23. Takeda K, Akira S, et al (2004). TLR signaling pathways. Semin. Immunol. 16: 3-9. http://dx.doi.org/10.1016/j.smim.2003.10.003 Weng M, Walker WA, Sanderson IR, et al (2007). Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia. Pediatr. Res. 62: 542-546. http://dx.doi.org/10.1203/PDR.0b013e318155a422