Publications

Found 3 results
Filters: Author is H.-I. Choi  [Clear All Filters]
2016
S. B. Im, Kwon, S. - J., Ryu, J., Jeong, S. W., Kim, J. B., Ahn, J. - W., Kim, S. H., Jo, Y. D., Choi, H. - I., Kang, S. - Y., Im, S. B., Kwon, S. - J., Ryu, J., Jeong, S. W., Kim, J. B., Ahn, J. - W., Kim, S. H., Jo, Y. D., Choi, H. - I., and Kang, S. - Y., Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.), vol. 15, p. -, 2016.
S. B. Im, Kwon, S. - J., Ryu, J., Jeong, S. W., Kim, J. B., Ahn, J. - W., Kim, S. H., Jo, Y. D., Choi, H. - I., Kang, S. - Y., Im, S. B., Kwon, S. - J., Ryu, J., Jeong, S. W., Kim, J. B., Ahn, J. - W., Kim, S. H., Jo, Y. D., Choi, H. - I., and Kang, S. - Y., Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.), vol. 15, p. -, 2016.
K. J. Lee, Kwon, S. - J., Hwang, J. E., Han, S. M., Jung, I., Kim, J. - B., Choi, H. - I., Ryu, J., and Kang, S. - Y., Genome-wide expression analysis of a rice mutant line under salt stress, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by grants from the Nuclear R&D Program by the Ministry of Science, ICT and Future Planning (MSIP; #2012M2A2A6003), and the research program of KAERI, Republic of Korea.REFERENCESArnon DI, et al (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15. http://dx.doi.org/10.1104/pp.24.1.1 Ashihara H, Sato F, et al (1993). Pyrophosphate: fructose-6-phosphate 1-phosphotransferase and biosynthetic capacity during differentiation of hypocotyls of Vigna seedlings. Biochim. Biophys. Acta 1156: 123-127. http://dx.doi.org/10.1016/0304-4165(93)90126-S Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, et al (2005). Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol. 6: R101. http://dx.doi.org/10.1186/gb-2005-6-12-r101 El-Moshaty FIB, Pike SM, Novacky AJ, Sehgal OP, et al (1993). Lipid peroxidation and superoxide production in cowpea (Vignaunguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiol. Mol. Plant Pathol. 43: 109-119. http://dx.doi.org/10.1006/pmpp.1993.1044 Eryilmaz F, et al (2007). The relationships between salt stress and anthocyanin content in higher plants. Biotechnol 20: 47-52. Goff SA, Ricke D, Lan TH, Presting G, et al (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100. http://dx.doi.org/10.1126/science.1068275 Gong Q, Li P, Ma S, Indu Rupassara S, et al (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J. 44: 826-839. http://dx.doi.org/10.1111/j.1365-313X.2005.02587.x Hala M, El-Bassiouny S, Bekheta MA, et al (2005). Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int. J. Agric. Biol. 3: 363-368. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ, et al (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. http://dx.doi.org/10.1146/annurev.arplant.51.1.463 Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, et al (2008). Resent advances in salt stress biology. Biotechnol 3: 1008-1013. Jung YJ, Lee IH, Han KH, Son CY, et al (2010). Expression analysis and characterization of rice oligopeptide transport gene (OsOPT10) that contributes to salt stress tolerance. Plant Biotechnol. 37: 483-493. http://dx.doi.org/10.5010/JPB.2010.37.4.483 Katsuhara M, Otsuka T, Ezaki B, et al (2005). Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci. 169: 369-373. http://dx.doi.org/10.1016/j.plantsci.2005.03.030 Kikuchi S, Satoh K, Nagata T, Kawagashira N, Rice Full-Length cDNA ConsortiumNational Institute of Agrobiological Sciences Rice Full-Length cDNA Project TeamFoundation of Advancement of International Science Genome Sequencing & Analysis GroupRIKENet al (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376-379. http://dx.doi.org/10.1126/science.1081288 Kim DS, Song JY, Chun JB, Lee KJ, et al (2010). Selection of Gamma-ray Induced Salt Tolerant Rice Mutants by in vitro Mutagenesis. J. Radiat. Ind. 4: 179-184. Kondou H, Ooka H, Yamada H, Satoh K, et al (2006). Microarray analysis of gene expression at initial stages of rice seed development. Breed. Sci. 56: 235-242. http://dx.doi.org/10.1270/jsbbs.56.235 Li XW, Wang Y, Yan F, Li JW, et al (2016). Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15026573 Liang Y, Chen Q, Liu Q, Zhang W, et al (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160: 1157-1164. http://dx.doi.org/10.1078/0176-1617-01065 Liavonchanka A, Feussner I, et al (2006). Lipoxygenases: occurrence, functions and catalysis. J. Plant Physiol. 163: 348-357. http://dx.doi.org/10.1016/j.jplph.2005.11.006 Lichtenaler HK (1987). Functional organization of carotenoids and pernylquinines in the photosynthetic membrane. Plenum Press, New York, 63-73. Liu R, Zhang HH, Chen ZX, Shahid MQ, et al (2015). Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone. Genet. Mol. Res. 14: 13667-13678. http://dx.doi.org/10.4238/2015.October.28.29 Luo Q, Zhao Z, Li DK, Zhang Y, et al (2016). Overexpression of NaKR3 enhances salt tolerance in Arabidopsis. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15016378 Marrs KA, et al (1996). The functions and regulation of glutathione S-transferase in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127-158. http://dx.doi.org/10.1146/annurev.arplant.47.1.127 Moradi F, Ismail AM, Gregorio G, Egdane J, et al (2003). Salinity tolerance of rice during reproductive development and association with tolerance at seedling stage. Indian J. Plant. Physiol. 8: 105-116. Mott KA, Woodrow IE, et al (2000). Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. J. Exp. Bot. 51: 399-406. http://dx.doi.org/10.1093/jexbot/51.suppl_1.399 Qi Y, Zhang H, Zhang D, Wang M, et al (2009). Assessing indica-japonica differentiation of improved rice varieties using microsatellite markers. J. Genet. Genomics 36: 305-312. http://dx.doi.org/10.1016/S1673-8527(08)60119-8 Rahdari P, Tavakoli S, Hosseini SM, et al (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleracea L.) leaves. J. Stress Physiol. Biochem. 8: 182-193. Romero LC, Dominguez-Solis JR, Gutiérrez-Alcalá G, Gotor C, et al (2001). Salt regulation of O-acetylserine (thiol) lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiol. Biochem. 39: 643-647. http://dx.doi.org/10.1016/S0981-9428(01)01277-3 Ruiz JM, Blumwald E, et al (2002). Salinity-induced glutathione synthesis in Brassica napus. Planta 214: 965-969. http://dx.doi.org/10.1007/s00425-002-0748-y Sanchez DH, Lippold F, Redestig H, Hannah MA, et al (2008). Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 53: 973-987. http://dx.doi.org/10.1111/j.1365-313X.2007.03381.x Silveira RDD, Abreu FRM, Mamidi S, McClean PE, et al (2015). Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa). Genet. Mol. Res. 14: 8181-8200. http://dx.doi.org/10.4238/2015.July.27.6 Simopoulos AP, et al (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37: 263-277. http://dx.doi.org/10.4067/S0716-97602004000200013 Song JY, Kim DS, Lee MC, Lee KJ, et al (2012). Physiological characterization of gamma-ray induced salt tolerant rice mutants. AJCS 6: 421-429. Suzuki M, Hashioka A, Mimura T, Ashihara H, et al (2005). Salt stress and glycolytic regulation in suspension-cultured cells of the mangrove tree, Bruguiera sexangula. Physiol. Plant. 123: 246-253. http://dx.doi.org/10.1111/j.1399-3054.2005.00456.x Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW, et al (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401: 914-917. http://dx.doi.org/10.1038/44842 Wang WB, Kim YH, Lee HS, Kim KY, et al (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 47: 570-577. http://dx.doi.org/10.1016/j.plaphy.2009.02.009 Wingler A, Roitsch T, et al (2008). Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol (Stuttg) 10 (Suppl 1): 50-62. http://dx.doi.org/10.1111/j.1438-8677.2008.00086.x Yu Y, Cui YC, Ren C, Rocha PSCF, et al (2016). Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15017336 Zhu JK, et al (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273. http://dx.doi.org/10.1146/annurev.arplant.53.091401.143329