Publications
Found 10 results
Filters: Author is M. Bakır [Clear All Filters]
“Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers”, vol. 9, pp. 591-600, 2010.
, Baranger A, Aubert G, Arnau G, Laine AL, et al. (2004). Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor. Appl. Genet. 108: 1309-1321.
http://dx.doi.org/10.1007/s00122-003-1540-5
PMid:14727027
Blair MW, Diaz JM, Hidalgo R, Diaz LM, et al. (2007). Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 116: 29-43.
http://dx.doi.org/10.1007/s00122-007-0644-8
PMid:17924092
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Burstin J, Deniot G, Potier J, Weinachter C, et al. (2001). Microsatellite polymorphism in Pisum sativum. Plant Breed. 120: 311-317.
http://dx.doi.org/10.1046/j.1439-0523.2001.00608.x
Duran LA, Blair MW, Giraldo MC, Macchiavelli R, et al. (2005). Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci. 45: 1320-1328.
http://dx.doi.org/10.2135/cropsci2004.0501
Ellis THN and Poyser SJ (2002). An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153: 17-25.
http://dx.doi.org/10.1046/j.0028-646X.2001.00302.x
Food and Agriculture Organization of the United Nations (FAO) (2008). FAOSTAT. Available at [http://faostat.fao.org]. Accessed March 23, 2010.
Hoey BK, Crowe KR, Jones VM and Polans NO (1996). A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theor. Appl. Genet. 92: 92-100.
http://dx.doi.org/10.1007/BF00222957
International Union for the Protection of New Varieties of Plants (UPOV) (1990). Guidelines for the Conduct of Test for Distinctiveness, Uniformity and Stability. Document UPOV (TG 7/9 Pisum sativum L.), Geneva.
Loridon K, McPhee K, Morin J, Dubreuil P, et al. (2005). Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet. 111: 1022-1031.
http://dx.doi.org/10.1007/s00122-005-0014-3
PMid:16133320
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): a Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford.
PMCid:41596
Özgen M, Adak MS, Söylemezoglu G and Ulukan H (2000). Bitkisel Gen Kaynaklarinin Korunma ve Kullaniminda Yeni Yaklasimlar (New approaches for the preservation and utilization of plant genetic resources). V. Türkiye Ziraat Müh. Kongresi (V. Agricultural Engineers Congress), Ankara, 259-284.
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Pilet-Nayel L, Muehlbauer FJ, McGee RJ, Kraft JM, et al. (2002). Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor. Appl. Genet. 106: 28-39.
PMid:12582868
Prioul S, Frankewitz A, Deniot G, Morin G, et al. (2004). Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor. Appl. Genet. 108: 1322-1334.
http://dx.doi.org/10.1007/s00122-003-1543-2
PMid:14968300
Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.
Samec P and Našinec V (1995). Detection of DNA polymorphism among pea cultivars using RAPD technique. Biol. Plantarum 37: 321-327.
Sarikamiş G, Yasar F, Bakir M, Kazan K, et al. (2009). Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey. Genet. Mol. Res. 8: 880-887.
http://dx.doi.org/10.4238/vol8-3gmr605
PMid:19731210
Sefc KM, Lefort F, Grando MS, Scott KD, et al. (2001). Microsatellite Markers for Grapevine: A State of the Art. In: Molecular Biology and Biotechnology of the Grapevine (Roubelakis-Angelakis KA, ed.). Kluwer Academic Publishers, Netherlands, 1-29.
http://dx.doi.org/10.1007/978-94-017-2308-4_17
Simioniuc D, Uptmoor R, Friedt W and Ordon F (2002). Genetic diversity and relationships among pea cultivars revealed by RAPDs and AFLPs. Plant Breed. 121: 429-435.
http://dx.doi.org/10.1046/j.1439-0523.2002.733320.x
Smýkal P, Horácèk J, Dostálová R and Hýbl M (2008). Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J. Appl. Genet. 49: 155-166.
http://dx.doi.org/10.1007/BF03195609
PMid:18436990
Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.
Tan A (1998). Current Status of Plant Genetic Resources Conservation in Turkey. In: The Proceeding of International Symposium on In situ Conservation of Plant Genetic Diversity (Zencirci N, Kaya Z, Anikster Y and Adams WT, eds.). November 4-8, 1996. Antalya, Turkey.
Tar'an B, Zhang C, Warkentin T, Tullu A, et al. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48: 257-272.
http://dx.doi.org/10.1139/g04-114
PMid:15838548
Wagner HW and Sefc KM (1999). Identity1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.
Weeden NF, Ellis THN, Timmerman-Vaughan GM, Sweicicki WK, et al. (1998). A consensus linkage map for Pisum sativum. Pisum Genet. 30: 1-4.
Yu K, Park SJ, Poysa V and Gepts P (2000). Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J. Hered. 91: 429-434.
http://dx.doi.org/10.1093/jhered/91.6.429
PMid:11218079
Zong XX, Guan JP, Wang SM and Liu QC (2008a). Genetic diversity among Chinese Pea (Pisum sativum L.) landraces as revealed by SSR markers. Acta Agron. Sinica 34: 1330-1338.
Zong XX, Guan JP, Wang SM, Liu QC, et al. (2008b). Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron. Sinica 34: 1518-1528.
http://dx.doi.org/10.1016/S1875-2780(09)60003-1
“Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers”, vol. 9, pp. 591-600, 2010.
, Baranger A, Aubert G, Arnau G, Laine AL, et al. (2004). Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor. Appl. Genet. 108: 1309-1321.
http://dx.doi.org/10.1007/s00122-003-1540-5
PMid:14727027
Blair MW, Diaz JM, Hidalgo R, Diaz LM, et al. (2007). Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 116: 29-43.
http://dx.doi.org/10.1007/s00122-007-0644-8
PMid:17924092
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Burstin J, Deniot G, Potier J, Weinachter C, et al. (2001). Microsatellite polymorphism in Pisum sativum. Plant Breed. 120: 311-317.
http://dx.doi.org/10.1046/j.1439-0523.2001.00608.x
Duran LA, Blair MW, Giraldo MC, Macchiavelli R, et al. (2005). Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci. 45: 1320-1328.
http://dx.doi.org/10.2135/cropsci2004.0501
Ellis THN and Poyser SJ (2002). An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153: 17-25.
http://dx.doi.org/10.1046/j.0028-646X.2001.00302.x
Food and Agriculture Organization of the United Nations (FAO) (2008). FAOSTAT. Available at [http://faostat.fao.org]. Accessed March 23, 2010.
Hoey BK, Crowe KR, Jones VM and Polans NO (1996). A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theor. Appl. Genet. 92: 92-100.
http://dx.doi.org/10.1007/BF00222957
International Union for the Protection of New Varieties of Plants (UPOV) (1990). Guidelines for the Conduct of Test for Distinctiveness, Uniformity and Stability. Document UPOV (TG 7/9 Pisum sativum L.), Geneva.
Loridon K, McPhee K, Morin J, Dubreuil P, et al. (2005). Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor. Appl. Genet. 111: 1022-1031.
http://dx.doi.org/10.1007/s00122-005-0014-3
PMid:16133320
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): a Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford.
PMCid:41596
Özgen M, Adak MS, Söylemezoglu G and Ulukan H (2000). Bitkisel Gen Kaynaklarinin Korunma ve Kullaniminda Yeni Yaklasimlar (New approaches for the preservation and utilization of plant genetic resources). V. Türkiye Ziraat Müh. Kongresi (V. Agricultural Engineers Congress), Ankara, 259-284.
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Pilet-Nayel L, Muehlbauer FJ, McGee RJ, Kraft JM, et al. (2002). Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor. Appl. Genet. 106: 28-39.
PMid:12582868
Prioul S, Frankewitz A, Deniot G, Morin G, et al. (2004). Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor. Appl. Genet. 108: 1322-1334.
http://dx.doi.org/10.1007/s00122-003-1543-2
PMid:14968300
Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.
Samec P and Našinec V (1995). Detection of DNA polymorphism among pea cultivars using RAPD technique. Biol. Plantarum 37: 321-327.
Sarikamiş G, Yasar F, Bakir M, Kazan K, et al. (2009). Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey. Genet. Mol. Res. 8: 880-887.
http://dx.doi.org/10.4238/vol8-3gmr605
PMid:19731210
Sefc KM, Lefort F, Grando MS, Scott KD, et al. (2001). Microsatellite Markers for Grapevine: A State of the Art. In: Molecular Biology and Biotechnology of the Grapevine (Roubelakis-Angelakis KA, ed.). Kluwer Academic Publishers, Netherlands, 1-29.
http://dx.doi.org/10.1007/978-94-017-2308-4_17
Simioniuc D, Uptmoor R, Friedt W and Ordon F (2002). Genetic diversity and relationships among pea cultivars revealed by RAPDs and AFLPs. Plant Breed. 121: 429-435.
http://dx.doi.org/10.1046/j.1439-0523.2002.733320.x
Smýkal P, Horácèk J, Dostálová R and Hýbl M (2008). Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J. Appl. Genet. 49: 155-166.
http://dx.doi.org/10.1007/BF03195609
PMid:18436990
Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.
Tan A (1998). Current Status of Plant Genetic Resources Conservation in Turkey. In: The Proceeding of International Symposium on In situ Conservation of Plant Genetic Diversity (Zencirci N, Kaya Z, Anikster Y and Adams WT, eds.). November 4-8, 1996. Antalya, Turkey.
Tar'an B, Zhang C, Warkentin T, Tullu A, et al. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48: 257-272.
http://dx.doi.org/10.1139/g04-114
PMid:15838548
Wagner HW and Sefc KM (1999). Identity1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.
Weeden NF, Ellis THN, Timmerman-Vaughan GM, Sweicicki WK, et al. (1998). A consensus linkage map for Pisum sativum. Pisum Genet. 30: 1-4.
Yu K, Park SJ, Poysa V and Gepts P (2000). Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J. Hered. 91: 429-434.
http://dx.doi.org/10.1093/jhered/91.6.429
PMid:11218079
Zong XX, Guan JP, Wang SM and Liu QC (2008a). Genetic diversity among Chinese Pea (Pisum sativum L.) landraces as revealed by SSR markers. Acta Agron. Sinica 34: 1330-1338.
Zong XX, Guan JP, Wang SM, Liu QC, et al. (2008b). Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron. Sinica 34: 1518-1528.
http://dx.doi.org/10.1016/S1875-2780(09)60003-1
“Genetic diversity of eggplant (Solanum melongena) germplasm from Turkey assessed by SSR and RAPD markers”, vol. 9, pp. 1568-1576, 2010.
, Bindler G, van der Hoeven R, Gunduz I, Plieske J, et al. (2007). A microsatellite marker based linkage map of tobacco. Theor. Appl. Genet. 114: 341-349.
http://dx.doi.org/10.1007/s00122-006-0437-5
PMid:17115128
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Doğanlar S, Frary A, Daunay MC, Lester RN, et al. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161: 1697-1711.
PMid:12196412 PMCid:1462225
FAO (2008). Food and Agriculture Organization of the United Nations (FAO). FAOSTAT, Italy. [http://faostat.fao.org]. Accessed June 2, 2010.
Frary A, Xu Y, Liu J, Mitchell S, et al. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312.
http://dx.doi.org/10.1007/s00122-005-2023-7
PMid:15926074
He C, Poysa V and Yu K (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106: 363-373.
PMid:12582864
İlbi H (2003). RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Sci. Hort. 97: 211-218.
http://dx.doi.org/10.1016/S0304-4238(02)00158-9
Isshiki S, Okubo and Fujieda K (1994). Phylogeny of eggplant and related Solanum species constructed by allozyme variation. Sci. Hort. 59: 171-176.
http://dx.doi.org/10.1016/0304-4238(94)90010-8
Isshiki S, Iwata N and Khan MR (2008). ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Sci. Hort. 117: 186-190.
http://dx.doi.org/10.1016/j.scienta.2008.04.003
Kalloo G (1993). Eggplant Solanum melongena L. In: Genetic Improvement of Vegetable Crop (Kalloo G and Bergh BO, eds.). Pergamon Press, Oxford, 587-604.
http://dx.doi.org/10.1016/B978-0-08-040826-2.50047-3
Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18.
http://dx.doi.org/10.4238/vol9-1gmr692
PMid:20082266
Lefort F, Lally M, Thompson D and Douglas GC (1998). Morfological traits microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tuallynally, Ireland. Silvae Genet. 47: 5-6.
Mace ES, Lester RN and Gebhardt CG (1999). AFLP analysis of genetic relationships among the cultivated eggplant, Solanum melongena L., and wild relatives. Theor. Appl. Genet. 99: 626-633.
http://dx.doi.org/10.1007/s001220051277
PMid:22665198
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): a Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford.
PMCid:41596
Nunome T, Ishiguro K, Yoshida T and Hirai M (2001). Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed. Sci. 51: 19-26.
http://dx.doi.org/10.1270/jsbbs.51.19
Nunome T, Suwabe K, Iketani H and Hirai M (2003). Identification and characterization of microsatellites in eggplant. Plant Breed. 122: 256-262.
http://dx.doi.org/10.1046/j.1439-0523.2003.00816.x
Nunome T, Negoro S, Kono I, Kanamori H, et al. (2009). Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor. Appl. Genet. 119: 1143-1153.
http://dx.doi.org/10.1007/s00122-009-1116-0
PMid:19662343
Özkaya O and Dündar Ö (2009a). Response of 1-methylcyclopropene (1-MCP) treatments on some quality parameters of plum during storage. J. Food Agric. Environ. 7: 233-236.
Özkaya O and Dündar Ö (2009b). Chemical and physical characteristics of four strawberry cultivars. Asian J. Chem. 21: 2185-2188.
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.
Saker MM, Youssef SS, Abdallah NA and Bashandy HS (2005). Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP. Afr. J. Biotechnol. 4: 882-890.
Sarıkamış G, Marquez J, Maccormack R and Bennett R (2006). High glucosinolate broccoli - A delivery system for sulforaphane. Mol. Breed. 18: 219-228.
http://dx.doi.org/10.1007/s11032-006-9029-y
Sarıkamış G, Yasar F, Bakir M, Kazan K, et al. (2009). Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey. Genet. Mol. Res. 8: 880-887.
http://dx.doi.org/10.4238/vol8-3gmr605
PMid:19731210
Sarıkamış G, Yanmaz R, Ermis S, Bakir M, et al. (2010). Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet. Mol. Res. 9: 591-600.
http://dx.doi.org/10.4238/vol9-1gmr762
PMid:20391343
Sefc KM, Lefort F, Grando MS and Scott KD (2001). Microsatellite Markers for Grapevine: A State of the Art. In: Molecular Biology and Biotechnology of the Grapevine (Roubelakis-Angelakis KA, ed.). Kluwer Academic Publishers, The Netherlands, 1-29.
http://dx.doi.org/10.1007/978-94-017-2308-4_17
Smulders MJM, Bredemeijer G, Rus-Kortekaas W and Aren P (1997). Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 97: 264-272.
http://dx.doi.org/10.1007/s001220050409
Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.
Stàgel A, Portis E, Toppino L, Rotino GL, et al. (2008). Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics 9: 357.
http://dx.doi.org/10.1186/1471-2164-9-357
PMid:18667065 PMCid:2527019
Wagner HW and Sefc KM (1999). Identity1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.
Weijun (1992). Inheritance of isozymes and morphological characters in the brinjal eggplant. Acta Genet. Sin. 19: 423-429.
Yi GB, Lee JM, Lee S, Choi D, et al. (2006). Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114: 113-130.
http://dx.doi.org/10.1007/s00122-006-0415-y
PMid:17047912
“Genetic diversity of eggplant (Solanum melongena) germplasm from Turkey assessed by SSR and RAPD markers”, vol. 9, pp. 1568-1576, 2010.
, Bindler G, van der Hoeven R, Gunduz I, Plieske J, et al. (2007). A microsatellite marker based linkage map of tobacco. Theor. Appl. Genet. 114: 341-349.
http://dx.doi.org/10.1007/s00122-006-0437-5
PMid:17115128
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Doğanlar S, Frary A, Daunay MC, Lester RN, et al. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161: 1697-1711.
PMid:12196412 PMCid:1462225
FAO (2008). Food and Agriculture Organization of the United Nations (FAO). FAOSTAT, Italy. [http://faostat.fao.org]. Accessed June 2, 2010.
Frary A, Xu Y, Liu J, Mitchell S, et al. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312.
http://dx.doi.org/10.1007/s00122-005-2023-7
PMid:15926074
He C, Poysa V and Yu K (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106: 363-373.
PMid:12582864
İlbi H (2003). RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Sci. Hort. 97: 211-218.
http://dx.doi.org/10.1016/S0304-4238(02)00158-9
Isshiki S, Okubo and Fujieda K (1994). Phylogeny of eggplant and related Solanum species constructed by allozyme variation. Sci. Hort. 59: 171-176.
http://dx.doi.org/10.1016/0304-4238(94)90010-8
Isshiki S, Iwata N and Khan MR (2008). ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Sci. Hort. 117: 186-190.
http://dx.doi.org/10.1016/j.scienta.2008.04.003
Kalloo G (1993). Eggplant Solanum melongena L. In: Genetic Improvement of Vegetable Crop (Kalloo G and Bergh BO, eds.). Pergamon Press, Oxford, 587-604.
http://dx.doi.org/10.1016/B978-0-08-040826-2.50047-3
Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18.
http://dx.doi.org/10.4238/vol9-1gmr692
PMid:20082266
Lefort F, Lally M, Thompson D and Douglas GC (1998). Morfological traits microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tuallynally, Ireland. Silvae Genet. 47: 5-6.
Mace ES, Lester RN and Gebhardt CG (1999). AFLP analysis of genetic relationships among the cultivated eggplant, Solanum melongena L., and wild relatives. Theor. Appl. Genet. 99: 626-633.
http://dx.doi.org/10.1007/s001220051277
PMid:22665198
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): a Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford.
PMCid:41596
Nunome T, Ishiguro K, Yoshida T and Hirai M (2001). Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed. Sci. 51: 19-26.
http://dx.doi.org/10.1270/jsbbs.51.19
Nunome T, Suwabe K, Iketani H and Hirai M (2003). Identification and characterization of microsatellites in eggplant. Plant Breed. 122: 256-262.
http://dx.doi.org/10.1046/j.1439-0523.2003.00816.x
Nunome T, Negoro S, Kono I, Kanamori H, et al. (2009). Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor. Appl. Genet. 119: 1143-1153.
http://dx.doi.org/10.1007/s00122-009-1116-0
PMid:19662343
Özkaya O and Dündar Ö (2009a). Response of 1-methylcyclopropene (1-MCP) treatments on some quality parameters of plum during storage. J. Food Agric. Environ. 7: 233-236.
Özkaya O and Dündar Ö (2009b). Chemical and physical characteristics of four strawberry cultivars. Asian J. Chem. 21: 2185-2188.
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.
Saker MM, Youssef SS, Abdallah NA and Bashandy HS (2005). Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP. Afr. J. Biotechnol. 4: 882-890.
Sarıkamış G, Marquez J, Maccormack R and Bennett R (2006). High glucosinolate broccoli - A delivery system for sulforaphane. Mol. Breed. 18: 219-228.
http://dx.doi.org/10.1007/s11032-006-9029-y
Sarıkamış G, Yasar F, Bakir M, Kazan K, et al. (2009). Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey. Genet. Mol. Res. 8: 880-887.
http://dx.doi.org/10.4238/vol8-3gmr605
PMid:19731210
Sarıkamış G, Yanmaz R, Ermis S, Bakir M, et al. (2010). Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet. Mol. Res. 9: 591-600.
http://dx.doi.org/10.4238/vol9-1gmr762
PMid:20391343
Sefc KM, Lefort F, Grando MS and Scott KD (2001). Microsatellite Markers for Grapevine: A State of the Art. In: Molecular Biology and Biotechnology of the Grapevine (Roubelakis-Angelakis KA, ed.). Kluwer Academic Publishers, The Netherlands, 1-29.
http://dx.doi.org/10.1007/978-94-017-2308-4_17
Smulders MJM, Bredemeijer G, Rus-Kortekaas W and Aren P (1997). Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 97: 264-272.
http://dx.doi.org/10.1007/s001220050409
Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.
Stàgel A, Portis E, Toppino L, Rotino GL, et al. (2008). Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics 9: 357.
http://dx.doi.org/10.1186/1471-2164-9-357
PMid:18667065 PMCid:2527019
Wagner HW and Sefc KM (1999). Identity1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.
Weijun (1992). Inheritance of isozymes and morphological characters in the brinjal eggplant. Acta Genet. Sin. 19: 423-429.
Yi GB, Lee JM, Lee S, Choi D, et al. (2006). Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114: 113-130.
http://dx.doi.org/10.1007/s00122-006-0415-y
PMid:17047912
“Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks”, vol. 9, pp. 2156-2165, 2010.
, Aradhya MK, Liana Y, Zee FT and Manshardt RM (1998). Genetic variability in Macadamia. Genet. Resour. Crop Evol. 45: 19-32.
http://dx.doi.org/10.1023/A:1008634103954
Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, et al. (2003). A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 106: 819-825.
PMid:12647055
Bouhadida M, Casas AM, Gonzalo MJ, Arus P, et al. (2009). Molecular characterization and genetic diversity of Prunus rootstocks. Sci. Hortic. 120: 237-245.
http://dx.doi.org/10.1016/j.scienta.2008.11.015
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Casas AM, Igartua E, Balaguer G and Moreno MA (1999). Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica 110: 139-149.
http://dx.doi.org/10.1023/A:1003745311408
Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193.
http://dx.doi.org/10.1016/j.scienta.2008.10.008
Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor. App. Genet. 99: 65-72.
http://dx.doi.org/10.1007/s001220051209
Dirlewanger E, Cosson P, Tavaud M, Aranzana J, et al. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105: 127-138.
http://dx.doi.org/10.1007/s00122-002-0867-7
PMid:12582570
Dosba F, Bernhard R and Zanetto A (1994). Importance des ressources génétiques des Prunus. C.R. Acad. Agric. Fr. 80: 45-57.
Downey SL and Iezzoni AF (2000). Polymophic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J. Am. Soc. Hortic. Sci. 125: 76-80.
Duminil J and Di Michele M (2009). Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst. 143: 528-542.
http://dx.doi.org/10.1080/11263500902722964
Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 51: 419-435.
http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79
Ercisli S, Agar G, Orhan E, Yildirim N, et al. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochem. Syst. Ecol. 35: 764-769.
http://dx.doi.org/10.1016/j.bse.2007.05.014
Ilgin M, Kafkas S and Ercisli S (2009). Molecular characterization of plum cultivars by AFLP markers. Biotechnol. Biotechnol. Eq. 23: 1189-1193.
Lacis G, Rashal I, Ruisa S, Trajkovski V, et al. (2009). Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 121: 451-457.
http://dx.doi.org/10.1016/j.scienta.2009.03.016
Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, et al. (2008). A genetic linkage map for an apricot (Prunus armeniaca L.). BC1 population mapping plum pox virus resistance. Tree Genet. Genomes 4: 481-493.
http://dx.doi.org/10.1007/s11295-007-0125-x
Maghuly F, Fernandez EB, Ruthner S, Pedryc A, et al. (2005). Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet. Genome 1: 151-165.
http://dx.doi.org/10.1007/s11295-005-0018-9
Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434.
http://dx.doi.org/10.1111/j.1471-8286.2004.00674.x
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford.
PMCid:41596
Mnejja M, Garcia-Mas J, Howad W and Arús P (2005). Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5: 531-535.
http://dx.doi.org/10.1111/j.1471-8286.2005.00977.x
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Rehder A (1940). A Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warmer Temperate Regions. 2nd edn. Macmillan, New York, 162.
Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.
Rom RC (1982). A new philosophy for peach rootstock development. Fruit Variety J. 36: 34-37.
Romero C, Pedryc A, Munoz V, Llacer G, et al. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.
http://dx.doi.org/10.1139/g02-128
PMid:12723040
Sefc KM, Lopez MS, Lefort F, Botta R, et al. (2000). Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100: 498-505.
http://dx.doi.org/10.1007/s001220050065
Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.
Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterisation of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101: 421-428.
http://dx.doi.org/10.1007/s001220051499
Struss D, Ahmad R, Southwick SM and Boritzki M (2003). Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP marker. J. Am. Soc. Hortic. Sci. 128: 904-909.
Wagner HW and Sefc KM (1999). Identity 1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.
Wünsch A (2009). SSR markers for fingerprinting Prunus species. Acta Hortic. 814: 689-694.
Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63.
PMid:12080370
Wünsch A and Hormaza JI (2004). Molecular evaluation of genetic diversity and S allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet. Resour. Crop Evol. 51: 635-641.
http://dx.doi.org/10.1023/B:GRES.0000024649.06681.43
Wünsch A, Gella R and Hormaza JI (2004). Molecular characterization of rootstocks for sweet cherry (Prunus avium L.). Acta Hortic. 658: 599-602.
Xuan H, Wang R, Büchele M, Möller O, et al. (2009). Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Hortic. 839: 507-514.
Yamamoto T, Mochida K, Imai T, Haji T, et al. (2003). Parentage analysis in Japanese peaches using SSR markers. Breed. Sci. 53: 35-40.
http://dx.doi.org/10.1270/jsbbs.53.35
Yilmaz KU, Ercisli S, Asma BM, Dogan Y, et al. (2009). Genetic relatedness in Prunus genus revealed by inter-simple sequence repeat markers. HortScience 44: 293-297.
Zamani Z, Sarkhosh A, Fatahi R and Ebadi A (2007). Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J. Hortic. Sci. Biotech. 82: 11-18.
“Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks”, vol. 9, pp. 2156-2165, 2010.
, Aradhya MK, Liana Y, Zee FT and Manshardt RM (1998). Genetic variability in Macadamia. Genet. Resour. Crop Evol. 45: 19-32.
http://dx.doi.org/10.1023/A:1008634103954
Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, et al. (2003). A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 106: 819-825.
PMid:12647055
Bouhadida M, Casas AM, Gonzalo MJ, Arus P, et al. (2009). Molecular characterization and genetic diversity of Prunus rootstocks. Sci. Hortic. 120: 237-245.
http://dx.doi.org/10.1016/j.scienta.2008.11.015
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Casas AM, Igartua E, Balaguer G and Moreno MA (1999). Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica 110: 139-149.
http://dx.doi.org/10.1023/A:1003745311408
Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193.
http://dx.doi.org/10.1016/j.scienta.2008.10.008
Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor. App. Genet. 99: 65-72.
http://dx.doi.org/10.1007/s001220051209
Dirlewanger E, Cosson P, Tavaud M, Aranzana J, et al. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105: 127-138.
http://dx.doi.org/10.1007/s00122-002-0867-7
PMid:12582570
Dosba F, Bernhard R and Zanetto A (1994). Importance des ressources génétiques des Prunus. C.R. Acad. Agric. Fr. 80: 45-57.
Downey SL and Iezzoni AF (2000). Polymophic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J. Am. Soc. Hortic. Sci. 125: 76-80.
Duminil J and Di Michele M (2009). Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst. 143: 528-542.
http://dx.doi.org/10.1080/11263500902722964
Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 51: 419-435.
http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79
Ercisli S, Agar G, Orhan E, Yildirim N, et al. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochem. Syst. Ecol. 35: 764-769.
http://dx.doi.org/10.1016/j.bse.2007.05.014
Ilgin M, Kafkas S and Ercisli S (2009). Molecular characterization of plum cultivars by AFLP markers. Biotechnol. Biotechnol. Eq. 23: 1189-1193.
Lacis G, Rashal I, Ruisa S, Trajkovski V, et al. (2009). Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 121: 451-457.
http://dx.doi.org/10.1016/j.scienta.2009.03.016
Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, et al. (2008). A genetic linkage map for an apricot (Prunus armeniaca L.). BC1 population mapping plum pox virus resistance. Tree Genet. Genomes 4: 481-493.
http://dx.doi.org/10.1007/s11295-007-0125-x
Maghuly F, Fernandez EB, Ruthner S, Pedryc A, et al. (2005). Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet. Genome 1: 151-165.
http://dx.doi.org/10.1007/s11295-005-0018-9
Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434.
http://dx.doi.org/10.1111/j.1471-8286.2004.00674.x
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford.
PMCid:41596
Mnejja M, Garcia-Mas J, Howad W and Arús P (2005). Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5: 531-535.
http://dx.doi.org/10.1111/j.1471-8286.2005.00977.x
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Rehder A (1940). A Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warmer Temperate Regions. 2nd edn. Macmillan, New York, 162.
Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.
Rom RC (1982). A new philosophy for peach rootstock development. Fruit Variety J. 36: 34-37.
Romero C, Pedryc A, Munoz V, Llacer G, et al. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.
http://dx.doi.org/10.1139/g02-128
PMid:12723040
Sefc KM, Lopez MS, Lefort F, Botta R, et al. (2000). Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100: 498-505.
http://dx.doi.org/10.1007/s001220050065
Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.
Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterisation of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101: 421-428.
http://dx.doi.org/10.1007/s001220051499
Struss D, Ahmad R, Southwick SM and Boritzki M (2003). Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP marker. J. Am. Soc. Hortic. Sci. 128: 904-909.
Wagner HW and Sefc KM (1999). Identity 1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.
Wünsch A (2009). SSR markers for fingerprinting Prunus species. Acta Hortic. 814: 689-694.
Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63.
PMid:12080370
Wünsch A and Hormaza JI (2004). Molecular evaluation of genetic diversity and S allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet. Resour. Crop Evol. 51: 635-641.
http://dx.doi.org/10.1023/B:GRES.0000024649.06681.43
Wünsch A, Gella R and Hormaza JI (2004). Molecular characterization of rootstocks for sweet cherry (Prunus avium L.). Acta Hortic. 658: 599-602.
Xuan H, Wang R, Büchele M, Möller O, et al. (2009). Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Hortic. 839: 507-514.
Yamamoto T, Mochida K, Imai T, Haji T, et al. (2003). Parentage analysis in Japanese peaches using SSR markers. Breed. Sci. 53: 35-40.
http://dx.doi.org/10.1270/jsbbs.53.35
Yilmaz KU, Ercisli S, Asma BM, Dogan Y, et al. (2009). Genetic relatedness in Prunus genus revealed by inter-simple sequence repeat markers. HortScience 44: 293-297.
Zamani Z, Sarkhosh A, Fatahi R and Ebadi A (2007). Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J. Hortic. Sci. Biotech. 82: 11-18.
“SSR-based molecular analysis of economically important Turkish apricot cultivars”, vol. 9, pp. 324-332, 2010.
, Anonymous (2003). TURKSTAT (State Institute of Statistics, Prime Ministry, and Republic of Turkey) official data. Agricultural Structure; Production, Price, Value, Ankara, Turkey.
Asma BM, Kan T and Birhanli O (2007). Characterization of promising apricot (Prunus armeniaca L.) genetic resources in Malatya, Turkey. Genet. Res. Crop Evol. 54: 205-212.
http://dx.doi.org/10.1007/s10722-005-3809-9
Badenes ML, Martínez-Calvo J and Llácer G (1998). Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102: 93-99.
http://dx.doi.org/10.1023/A:1018332312570
Batmaz MF (2005). Yield Quality of Some Apricot Cultivars in Adana Ecological Conditions (in Turkish, with English abstract). M.Sc. thesis, Çukurova University Science Institute, Adana.
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 99: 65-72.
http://dx.doi.org/10.1007/s001220051209
Geuna F, Toschi M and Bassi D (2003). The use of AFLP markers for cultivar identification in apricot. Plant Breed. 122: 526-531.
http://dx.doi.org/10.1111/j.1439-0523.2003.00897.x
Hagen S, Khadari B, Lambert P and Audergon JM (2002). Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor. Appl. Genet. 105: 298-305.
http://dx.doi.org/10.1007/s00122-002-0910-8
PMid:12582532
Hormaza JI (2002). Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor. Appl. Genet. 104: 321-328.
http://dx.doi.org/10.1007/s001220100684
PMid:12582704
Hormaza JI, Yamane H and Rodrigo J (2007). Apricot. In: Genome Mapping and Molecular Breeding in Plants (Fruits and Nuts) (Kole C, ed.). Springer-Verlag, Berlin, 171-187.
Hurtado MA, Westman A, Beck E, Abbott GA, et al. (2002). Genetic diversity in apricot cultivars based on AFLP markers. Euphytica 127: 297-301.
http://dx.doi.org/10.1023/A:1020206601328
Lefort F, Lally M, Thompson D and Douglas GC (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genet. 47: 257-262.
Maghuly F, Fernandez EB, Ruthner S, Pedryc A, et al. (2005). Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet. Genomes 1: 151-165.
http://dx.doi.org/10.1007/s11295-005-0018-9
Mariniello L, Sommella MG, Sorrentino A, Forlani M, et al. (2002). Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol. Lett. 24: 749-755.
http://dx.doi.org/10.1023/A:1015516712754
Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434.
http://dx.doi.org/10.1111/j.1471-8286.2004.00674.x
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): a Computer Program for Calculating Various Statistics on Microsatellite Allele Data. University of Stanford, Stanford.
PMCid:41596
Özbek S (1978). Özel Meyvecilik (Kisin Yapragini Döken Meyve Türleri). Publications No.: 128, Textbook No.: 11. Çukurova University Agricultural Faculty, Adana.
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Pedryc A, Ruthner S, Herman R, Krska B, et al. (2009). Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci. Horticul. 121: 19-26.
http://dx.doi.org/10.1016/j.scienta.2009.01.014
Rohlf F (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Version 2.0. Exeter Publishing Ltd., Setoukat.
Romero C, Pedryc A, Munoz V, Llacer G, et al. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.
http://dx.doi.org/10.1139/g02-128
PMid:12723040
Sánchez-Pérez R, Ruiz D, Dicenta F, Egea J, et al. (2005). Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Sci. Horticul. 103: 305-315.
http://dx.doi.org/10.1016/j.scienta.2004.06.009
Şelli F, Bakir M, Inan G, Aygün H, et al. (2007). Simple sequence repeat-based assessment of genetic diversity in 'Dimrit' and 'Gemre' grapevine accessions from Turkey. Vitis J. Grapevine Res. 46: 182-187.
Sneath PHA and Sokal RR (1973). Numerical Taxanomy. Freeman, San Francisco.
Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101: 421-428.
http://dx.doi.org/10.1007/s001220051499
Wagner HW and Sefc KM (1999). IDENTITY 1.0. Freeware Program for the Analysis of Microsatellite Data. Centre for Applied Genetics, University of Agricultural Science, Vienna.
Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63.
PMid:12080370
Zhebentyayeva TN, Reighard GL, Gorina VM and Abbott AG (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106: 435-444.
PMid:12589543
-+
“SSR-based molecular analysis of economically important Turkish apricot cultivars”, vol. 9, pp. 324-332, 2010.
, Anonymous (2003). TURKSTAT (State Institute of Statistics, Prime Ministry, and Republic of Turkey) official data. Agricultural Structure; Production, Price, Value, Ankara, Turkey.
Asma BM, Kan T and Birhanli O (2007). Characterization of promising apricot (Prunus armeniaca L.) genetic resources in Malatya, Turkey. Genet. Res. Crop Evol. 54: 205-212.
http://dx.doi.org/10.1007/s10722-005-3809-9
Badenes ML, Martínez-Calvo J and Llácer G (1998). Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102: 93-99.
http://dx.doi.org/10.1023/A:1018332312570
Batmaz MF (2005). Yield Quality of Some Apricot Cultivars in Adana Ecological Conditions (in Turkish, with English abstract). M.Sc. thesis, Çukurova University Science Institute, Adana.
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
http://dx.doi.org/10.1038/368455a0
PMid:7510853
Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 99: 65-72.
http://dx.doi.org/10.1007/s001220051209
Geuna F, Toschi M and Bassi D (2003). The use of AFLP markers for cultivar identification in apricot. Plant Breed. 122: 526-531.
http://dx.doi.org/10.1111/j.1439-0523.2003.00897.x
Hagen S, Khadari B, Lambert P and Audergon JM (2002). Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor. Appl. Genet. 105: 298-305.
http://dx.doi.org/10.1007/s00122-002-0910-8
PMid:12582532
Hormaza JI (2002). Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor. Appl. Genet. 104: 321-328.
http://dx.doi.org/10.1007/s001220100684
PMid:12582704
Hormaza JI, Yamane H and Rodrigo J (2007). Apricot. In: Genome Mapping and Molecular Breeding in Plants (Fruits and Nuts) (Kole C, ed.). Springer-Verlag, Berlin, 171-187.
Hurtado MA, Westman A, Beck E, Abbott GA, et al. (2002). Genetic diversity in apricot cultivars based on AFLP markers. Euphytica 127: 297-301.
http://dx.doi.org/10.1023/A:1020206601328
Lefort F, Lally M, Thompson D and Douglas GC (1998). Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genet. 47: 257-262.
Maghuly F, Fernandez EB, Ruthner S, Pedryc A, et al. (2005). Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet. Genomes 1: 151-165.
http://dx.doi.org/10.1007/s11295-005-0018-9
Mariniello L, Sommella MG, Sorrentino A, Forlani M, et al. (2002). Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol. Lett. 24: 749-755.
http://dx.doi.org/10.1023/A:1015516712754
Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434.
http://dx.doi.org/10.1111/j.1471-8286.2004.00674.x
Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): a Computer Program for Calculating Various Statistics on Microsatellite Allele Data. University of Stanford, Stanford.
PMCid:41596
Özbek S (1978). Özel Meyvecilik (Kisin Yapragini Döken Meyve Türleri). Publications No.: 128, Textbook No.: 11. Çukurova University Agricultural Faculty, Adana.
Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x
PMid:7663752
Pedryc A, Ruthner S, Herman R, Krska B, et al. (2009). Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci. Horticul. 121: 19-26.
http://dx.doi.org/10.1016/j.scienta.2009.01.014
Rohlf F (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Version 2.0. Exeter Publishing Ltd., Setoukat.
Romero C, Pedryc A, Munoz V, Llacer G, et al. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252.
http://dx.doi.org/10.1139/g02-128
PMid:12723040
Sánchez-Pérez R, Ruiz D, Dicenta F, Egea J, et al. (2005). Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Sci. Horticul. 103: 305-315.
http://dx.doi.org/10.1016/j.scienta.2004.06.009
Şelli F, Bakir M, Inan G, Aygün H, et al. (2007). Simple sequence repeat-based assessment of genetic diversity in 'Dimrit' and 'Gemre' grapevine accessions from Turkey. Vitis J. Grapevine Res. 46: 182-187.
Sneath PHA and Sokal RR (1973). Numerical Taxanomy. Freeman, San Francisco.
Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101: 421-428.
http://dx.doi.org/10.1007/s001220051499
Wagner HW and Sefc KM (1999). IDENTITY 1.0. Freeware Program for the Analysis of Microsatellite Data. Centre for Applied Genetics, University of Agricultural Science, Vienna.
Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63.
PMid:12080370
Zhebentyayeva TN, Reighard GL, Gorina VM and Abbott AG (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106: 435-444.
PMid:12589543
-+
“Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey”, vol. 8, pp. 880-887, 2009.
, “Genetic characterization of green bean (Phaseolus vulgaris) genotypes from eastern Turkey”, vol. 8, pp. 880-887, 2009.
,