Found 3 results
Filters: Author is S. Martins Filho  [Clear All Filters]
V. S. Santos, S. Filho, M., Resende, M. D. V., Azevedo, C. F., Lopes, P. S., Guimarães, S. E. F., and Silva, F. F., Genomic prediction for additive and dominance effects of censored traits in pigs, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe first author would like to thank the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for a Sandwich Doctorate scholarship (grant #BEX 9415/14-9). Research supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais). REFERENCESAzevedo CF, de Resende MD, E Silva FF, Viana JMS, et al (2015). Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genet. 16: 105. Band GO, Guimarães SEF, Lopes PS, Peixoto JDO, et al (2005). Relationship between the Porcine Stress Syndrome gene and carcass and performance traits in F2 pigs resulting from divergent crosses. Genet. Mol. Biol. 28: 92-96. Costa EV, Diniz DB, Veroneze R, Resende MD, et al (2015). Estimating additive and dominance variances for complex traits in pigs combining genomic and pedigree information. Genet. Mol. Res. 14: 6303-6311. Cox DR, et al (1972). Regression models and life tables (with discussion). J. R. Stat. Soc. Series B Stat. Methodol. 34: 187-220. de Los Campos G, Gianola D, Rosa GJM, et al (2009). Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J. Anim. Sci. 87: 1883-1887. Ducrocq V, Sölkner J and Mészáros G (2010). Survival Kit v6-a Software Package for Survival Analysis (ID232). Proceedings of the 9th World Congress of Genetic and Applied Livestock Production, Leipzig, 232. Ertl J, Legarra A, Vitezica ZG, Varona L, et al (2014). Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle. Genet. Sel. Evol. 46: 40. de Almeida Filho JE, Guimarães JFR, E Silva FF, de Resende MD, et al (2016). The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity (Edinb) 117: 33-41. Giolo SR, Demétrio CGB, et al (2011). A frailty modeling approach for parental effects in animal breeding. J. Appl. Stat. 38: 619-629. Guo SF, Gianola D, Rekaya R, Short T, et al (2001). Bayesian analysis of lifetime performance and prolificacy in Landrace sows using a linear mixed model with censoring. Livest. Prod. Sci. 72: 243-252. Hollander CA, Knol EF, Heuven HCM, van Grevenhof EM, et al (2015). Interval from last insemination to culling: II. Culling reasons from practise and the correlation with longevity. Livest. Sci. 181: 25-30. Hou Y, Madsen P, Labouriau R, Zhang Y, et al (2009). Genetic analysis of days from calving to first insemination and days open in Danish Holsteins using different models and censoring scenarios. J. Dairy Sci. 92: 1229-1239. Kärkkäinen HP, Sillanpää MJ, et al (2013). Fast genomic predictions via Bayesian G-BLUP and multilocus models of threshold traits including censored Gaussian data. G3 (Bethesda) 3: 1511-1523. Mészáros G, Pálos J, Ducrocq V, Sölkner J, et al (2010). Heritability of longevity in Large White and Landrace sows using continuous time and grouped data models. Genet. Sel. Evol. 42: 13. Morota G, Boddhireddy P, Vukasinovic N, Gianola D, et al (2014). Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits. Front. Genet. 5: 56. Mrode RA (2005). Linear models for the prediction of animal breeding values. CAB International, Wallingford. Muñoz PR, Resende MFJrGezanSA, Resende MDV, et al (2014). Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics 198: 1759-1768. Nishio M, Satoh M, et al (2014). Including dominance effects in the genomic BLUP method for genomic evaluation. PLoS One 9: e85792. Onteru SK, Fan B, Nikkilä MT, Garrick DJ, et al (2011). Whole-genome association analyses for lifetime reproductive traits in the pig. J. Anim. Sci. 89: 988-995. Ornella L, Pérez P, Tapia E, González-Camacho JM, et al (2014). Genomic-enabled prediction with classification algorithms. Heredity (Edinb) 112: 616-626. Pankratz VS, de Andrade M, Therneau TM, et al (2005). Random-effects Cox proportional hazards model: general variance components methods for time-to-event data. Genet. Epidemiol. 28: 97-109. Pérez P, de los Campos G, et al (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics 198: 483-495. Pinheiro JC and Bates DM (2000). Mixed-Effects Models in S and S-PLUS. Springer-Verlag, New York. R Development Core Team (2016). R: A Language and Environment for Statistical Computing. Available at Accessed March 16, 2016. Resende MDV, Silva FF and Azevedo CF (2014). Estatística matemática, biométrica e computacional: modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), Inferência Bayesiana, Regressão Aleatória, Seleção Genômica, QTL-GWAS, Estatística Espacial e Temporal, Competição, Sobrevivência. Editora Suprema, Viçosa. Santos VS, Martins Filho S, Resende MDV, Azevedo CF, et al (2015). Genomic selection for slaughter age in pigs using the Cox frailty model. Genet. Mol. Res. 14: 12616-12627. Schaeffer L (2013). Survival. In: History of genetic evaluation methods in dairy cattle (Grosu H, Schaeffer L, Oltenacu PA, et al., eds.) 279-298. Available at []. Accessed 12 April, 2016 Schneider MdelP, Strandberg E, Ducrocq V, Roth A, et al (2005). Survival analysis applied to genetic evaluation for female fertility in dairy cattle. J. Dairy Sci. 88: 2253-2259. Serenius T, Stalder KJ, Puonti M, et al (2006). Impact of dominance effects on sow longevity. J. Anim. Breed. Genet. 123: 355-361. Silva FF, de Resende MD, Rocha GS, Duarte DA, et al (2013). Genomic growth curves of an outbred pig population. Genet. Mol. Biol. 36: 520-527. Smith BJ, et al (2007). boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. J. Stat. Softw. 21: 1-37. Sobczyńska M, Blicharski T, et al (2015). Phenotypic and genetic variation in longevity of Polish Landrace sows. J. Anim. Breed. Genet. 132: 318-327. Sorensen DA, Gianola D, Korsgaard IR, et al (1998). Bayesian mixed‐effects model analysis of a censored normal distribution with animal breeding applications. Acta Agric. Scand. Anim. Sci. 48: 222-229. Su G, Christensen OF, Ostersen T, Henryon M, et al (2012). Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One 7: e45293. Therneau T (2012). Mixed effects Cox models. R package version 2.2-3. Accessed April 12, 2016. VanRaden PM, et al (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414-4423. Verardo LL, Silva FF, Varona L, Resende MDV, et al (2015). Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. J. Appl. Genet. 56: 123-132. Wang C, Da Y, et al (2014). Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient. PLoS One 9: e114484. Yazdi MH, Visscher PM, Ducrocq V, Thompson R, et al (2002). Heritability, reliability of genetic evaluations and response to selection in proportional hazard models. J. Dairy Sci. 85: 1563-1577.