Publications

Found 4 results
Filters: Author is R.E.L. Procópio  [Clear All Filters]
2012
A. R. L. Procópio, Procópio, R. E. L., Pizzirani-Kleiner, A. A., and Melo, I. S., Diversity of propanil-degrading bacteria isolated from rice rhizosphere and their potential for plant growth promotion, vol. 11, pp. 2021-2034, 2012.
Ahemad M and Khan MS (2010). Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot. 29: 325-329. http://dx.doi.org/10.1016/j.cropro.2010.01.005 Andreote FD, Gullo MJ, de Souza Lima AO, Maccheroni W Jr, et al. (2004). Impact of genetically modified Enterobacter cloacae on indigenous endophytic community of Citrus sinensis seedlings. J. Microbiol. 42: 169-173. PMid:15459643 Bashan Y and Gonzalez LE (1999). Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl. Microbiol. Biotechnol. 51: 262-266. http://dx.doi.org/10.1007/s002530051391 Bergey DH, Holt JG and Krieg NR (1984). Bergey's Manual of Determinative Bacteriology. 2nd edn. Williams and Wilkins, Baltimore. PMCid:261435 Cycon M, Wojcik M and Piotrowska-Seget Z (2009). Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76: 494-501. http://dx.doi.org/10.1016/j.chemosphere.2009.03.023 PMid:19356785 Devliegher W, Arif M and Verstraete W (1995). Survival and Plant Growth Promotion of Detergent-Adapted Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 61: 3865-3871. PMid:16535159 PMCid:1388595 Dobereiner J, Baldani VLD and Baldani JI (1995). Como Isolar e Identificar Bactérias Diazotróficas de Plantas Não- Leguminosas. EMBRAPA Press, Brasília. PMCid:1236322 Fischer SE, Jofre EC, Cordero PV, Gutierrez Manero FJ, et al. (2010). Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie Van Leeuwenhoek 97: 241-251. http://dx.doi.org/10.1007/s10482-009-9405-9 PMid:20020326 Garbi C, Casasus L, Martinez-Alvarez R, Ignacio RJ, et al. (2006). Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5: Implementation in an herbicide removal reactor and modelling. Water Res. 40: 1217-1223. http://dx.doi.org/10.1016/j.watres.2006.01.010 PMid:16516265 Hatamian-Zarmi A, Shojaosadati SA, Vasheghani-Farahani E and Hosseinkhani S (2009). Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. Int. Biodeterior. Biodegradation 63: 788-794. http://dx.doi.org/10.1016/j.ibiod.2009.06.009 Hoagland RE, Zablotowicz RM and Locke MA (1994). Propanil Metabolism by Rhizosphere Microflora. Bioremediation Through Rhizosphere Technology (Anderson TA and Coats JR, eds.). American Chemical Society, Washington, 160-183. http://dx.doi.org/10.1021/bk-1994-0563.ch014 Kalwaslińska A, Kesy J and Donderski W (2008). Biodegradation of carbendazim by epiphytic and neustonic bacteria of eutrophic Chelmzynskie Lake. Pol. J. Microbiol. 57: 221-230. PMid:19004243 Kandasamy S, Loganathan K, Muthuraj R and Duraisamy S (2009). Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci. 7: 47. http://dx.doi.org/10.1186/1477-5956-7-47 PMid:20034395 PMCid:2805620 Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, et al. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251. http://dx.doi.org/10.1111/j.1462-2920.2004.00658.x PMid:15560822 Lawongsa P, Boonkerd N, Wongkaew S and Gara FO (2008). Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World J. Microbiol. Biotechnol. 24: 1877-1884. http://dx.doi.org/10.1007/s11274-008-9685-7 Li Y, Li J, Wang C and Wang P (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresour. Technol. 101: 6740-6744. http://dx.doi.org/10.1016/j.biortech.2010.03.083 PMid:20385485 Ma JP, Wang Z, Lu P, Wang HJ, et al. (2009). Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol. Lett. 296: 203-209. http://dx.doi.org/10.1111/j.1574-6968.2009.01638.x PMid:19459953 Monti MR, Smania AM, Fabro G, Alvarez ME, et al. (2005). Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl. Environ. Microbiol. 71: 8864-8872. http://dx.doi.org/10.1128/AEM.71.12.8864-8872.2005 PMid:16332883 PMCid:1317424 Pichon V, Krasnova AI and Hennion MC (2004). Development and characterization of an immunoaffinity solid-phase-extraction sorbent for trace analysis of propanil and related phenylurea herbicides in environmental waters and in beverages. Chromatographia 60: S221-S226. Richardson AE, Barea JM, McNeill AM and Prigent-Combaret C (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 321: 305-339. http://dx.doi.org/10.1007/s11104-009-9895-2 Rosas SB, Avanzini G, Carlier E and Pasluosta C (2009). Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol. Biochem. 41: 1802-1806. http://dx.doi.org/10.1016/j.soilbio.2008.10.009 Russo A, Basaglia M, Tola E and Casella S (2001). Survival, root colonisation and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. J. Ind. Microbiol. Biotechnol. 27: 337-342. http://dx.doi.org/10.1038/sj.jim.7000154 PMid:11773997 Sarkar S, Seenivasan S and Asir RP (2010). Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere. J. Hazard. Mater. 174: 295-298. http://dx.doi.org/10.1016/j.jhazmat.2009.09.050 PMid:19892461 Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, et al. (2009). Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 10: R51. http://dx.doi.org/10.1186/gb-2009-10-5-r51 PMid:19432983 PMCid:2718517 Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738 Tidswell EC, Russell NJ and White GF (1996). Ether-bond scission in the biodegradation of alcohol ethoxylate nonionic surfactants by Pseudomonas sp. strain SC25A. Microbiology 142: 1123-1131. http://dx.doi.org/10.1099/13500872-142-5-1123 PMid:8704954 Vamsee-Krishna C, Mohan Y and Phale PS (2006). Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl. Microbiol. Biotechnol. 72: 1263-1269. http://dx.doi.org/10.1007/s00253-006-0413-7 PMid:16607524 van Overbeek LS, van Veen JA and van Elsas JD (1997). Induced reporter gene activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat. Appl. Environ. Microbiol. 63: 1965-1973. PMid:16535606 PMCid:1389161 Vidali M (2001). Bioremediation. An overview. Pure Appl. Chem. 73: 1163-1172. http://dx.doi.org/10.1351/pac200173071163 Weyens N, Truyens S, Dupae J, Newman L, et al. (2010). Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ. Pollut. 158: 2915-2919. http://dx.doi.org/10.1016/j.envpol.2010.06.004 PMid:20598789 Witzig R, Junca H, Hecht HJ and Pieper DH (2006). Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl. Environ. Microbiol. 72: 3504-3514. http://dx.doi.org/10.1128/AEM.72.5.3504-3514.2006 PMid:16672497 PMCid:1472391 Yabur R, Bashan Y and Hernandez-Carmona G (2007). Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J. Appl. Phycol. 19: 43-53. http://dx.doi.org/10.1007/s10811-006-9109-8 Yao XF, Khan F, Pandey R and Pandey J (2011). Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiology 157: 721-726. http://dx.doi.org/10.1099/mic.0.045393-0 PMid:21163842 Zablotowicz RM, Locke MA, Hoagland RE, Knight SS, et al. (2001). Fluorescent Pseudomonas isolates from Mississippi Delta oxbow lakes: in vitro herbicide biotransformations. Environ. Toxicol. 16: 9-19. http://dx.doi.org/10.1002/1522-7278(2001)16:1<9::AID-TOX20>3.0.CO;2-# Zheng Y, Liu D, Xu H and Zhong Y (2009). Biodegradation of p-nitrophenol by Pseudomonas aeruginosa HS-D38 and analysis of metabolites with HPLC-ESI/MS. Int. Biodeterior. Biodegradation 63: 1125-1129. http://dx.doi.org/10.1016/j.ibiod.2009.09.010