Publications
Found 13 results
Filters: Author is A.C. Freitas [Clear All Filters]
“Polymorphism in the A2M gene associated with high-quality milk in Murrah buffaloes (Bubalus bubalis)”, vol. 15, p. -, 2016.
, , , “Association between single-nucleotide polymorphisms and milk production traits in buffalo”, vol. 13, pp. 10256-10268, 2014.
, “Development of a DNA-based vaccine strategy against bovine papillomavirus infection, involving the E5 or L2 gene”, vol. 13. pp. 1121-1126, 2014.
, “Detection and expression of Bovine papillomavirus in blood of healthy and papillomatosis-affected cattle”, vol. 12, pp. 3150-3156, 2013.
, “Entropy-based approach for selecting informative regions in the L1 gene of bovine papillomavirus for phylogenetic inference and primer design”, vol. 12, pp. 400-407, 2013.
, Antonsson A and Hansson BG (2002). Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J. Virol. 76: 12537-12542.
http://dx.doi.org/10.1128/JVI.76.24.12537-12542.2002
PMid:12438579 PMCid:136724
Batista MV, Ferreira TA, Freitas AC and Balbino VQ (2011). An entropy-based approach for the identification of phylogenetically informative genomic regions of Papillomavirus. Infect. Genet. Evol. 11: 2026-2033.
http://dx.doi.org/10.1016/j.meegid.2011.09.013
PMid:21964599
Bernard HU, Burk RD, Chen Z, van Doorslaer K, et al. (2010). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401: 70-79.
http://dx.doi.org/10.1016/j.virol.2010.02.002
PMid:20206957 PMCid:3400342
Bogaert L, Martens A, Kast WM, Van Marck E, et al. (2010). Bovine papillomavirus DNA can be detected in keratinocytes of equine sarcoid tumors. Vet. Microbiol. 146: 269-275.
http://dx.doi.org/10.1016/j.vetmic.2010.05.032
PMid:21095508
Campo MS (2006). Bovine Papillomavirus: Old System, New Lessons? In: Papillomavirus Research: From Natural History to Vaccine and Beyond (Campo M, ed.). Caister Academic Press, Wymondham.
Carvalho CC, Batista MV, Silva MA, Balbino VQ, et al. (2012). Detection of bovine papillomavirus types, co-infection and a putative new BPV11 subtype in cattle. Transbound. Emerg. Dis. DOI: 10.1111/j.1865-1682.2011.01296.x.
http://dx.doi.org/10.1111/j.1865-1682.2011.01296.x
Claus MP, Lunardi M, Alfieri AF, Ferracin LM, et al. (2008). Identification of unreported putative new bovine papillomavirus types in Brazilian cattle herds. Vet. Microbiol. 132: 396-401.
http://dx.doi.org/10.1016/j.vetmic.2008.05.026
PMid:18617336
de Villiers EM, Fauquet C, Broker TR, Bernard HU, et al. (2004). Classification of papillomaviruses. Virology 324: 17-27.
http://dx.doi.org/10.1016/j.virol.2004.03.033
PMid:15183049
Forslund O, Antonsson A, Nordin P, Stenquist B, et al. (1999). A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J. Gen. Virol. 80: 2437-2443.
PMid:10501499
Guindon S, Dufayard JF, Lefort V, Anisimova M, et al. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321.
http://dx.doi.org/10.1093/sysbio/syq010
PMid:20525638
Hatama S, Nobumoto K and Kanno T (2008). Genomic and phylogenetic analysis of two novel bovine papillomaviruses, BPV-9 and BPV-10. J. Gen. Virol. 89: 158-163.
http://dx.doi.org/10.1099/vir.0.83334-0
PMid:18089739
Hatama S, Ishihara R, Ueda Y, Kanno T, et al. (2011). Detection of a novel bovine papillomavirus type 11 (BPV-11) using xipapillomavirus consensus polymerase chain reaction primers. Arch. Virol. 156: 1281-1285.
http://dx.doi.org/10.1007/s00705-011-0970-7
PMid:21424729
Löhr CV, Juan-Sallés C, Rosas-Rosas A, Paras GA, et al. (2005). Sarcoids in captive zebras (Equus burchellii): association with bovine papillomavirus type 1 infection. J. Zoo. Wildl. Med. 36: 74-81.
http://dx.doi.org/10.1638/03-126
PMid:17315460
Lunardi M, Claus MP, Alfieri AA, Fungaro MH, et al. (2010). Phylogenetic position of an uncharacterized Brazilian strain of bovine papillomavirus in the genus Xipapillomavirus based on sequencing of the L1 open reading frame. Genet. Mol. Biol. 33: 745-749.
http://dx.doi.org/10.1590/S1415-47572010005000091
PMid:21637585 PMCid:3036134
Manos MM, Ting Y, Wright DK, Lewis AJ, et al. (1989). The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7: 209-214.
Ogawa T, Tomita Y, Okada M, Shinozaki K, et al. (2004). Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin. J. Gen. Virol. 85: 2191-2197.
http://dx.doi.org/10.1099/vir.0.80086-0
PMid:15269358
Ogawa T, Tomita Y, Okada M and Shirasawa H (2007). Complete genome and phylogenetic position of bovine papillomavirus type 7. J. Gen. Virol. 88: 1934-1938.
http://dx.doi.org/10.1099/vir.0.82794-0
PMid:17554025
Page RDM (1989). COMPONENT User's Manual (Release 1.5). University of Auckland, Auckland.
Posada D (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.
http://dx.doi.org/10.1093/molbev/msn083
PMid:18397919
Silvestre O, Borzacchiello G, Nava D, Iovane G, et al. (2009). Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas. Vet. Pathol. 46: 636-641.
http://dx.doi.org/10.1354/vp.08-VP-0222-P-FL
PMid:19276046
Somvanshi R (2011). Papillomatosis in buffaloes: a less-known disease. Transbound. Emerg. Dis. 58: 327-332.
http://dx.doi.org/10.1111/j.1865-1682.2011.01211.x
PMid:21435195
Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
http://dx.doi.org/10.1093/molbev/msr121
PMid:21546353 PMCid:3203626
Tomita Y, Literak I, Ogawa T, Jin Z, et al. (2007). Complete genomes and phylogenetic positions of bovine papillomavirus type 8 and a variant type from a European bison. Virus Genes 35: 243-249.
http://dx.doi.org/10.1007/s11262-006-0055-y
PMid:17265141
van Dyk E, Oosthuizen MC, Bosman AM, Nel PJ, et al. (2009). Detection of bovine papillomavirus DNA in sarcoid-affected and healthy free-roaming zebra (Equus zebra) populations in South Africa. J. Virol. Methods 158: 141-151.
http://dx.doi.org/10.1016/j.jviromet.2009.02.008
PMid:19428583
Wortley AH, Rudall PJ, Harris DJ and Scotland RW (2005). How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst. Biol. 54: 697-709.
http://dx.doi.org/10.1080/10635150500221028
PMid:16195214
Zhu W, Dong J, Shimizu E, Hatama S, et al. (2012). Characterization of novel bovine papillomavirus type 12 (BPV-12) causing epithelial papilloma. Arch. Virol. 157: 85-91.
http://dx.doi.org/10.1007/s00705-011-1140-7
PMid:22033594
“Expression of the bovine papillomavirus type 1, 2 and 4 L1 genes in the yeast Pichia pastoris”, vol. 11, pp. 2598-2607, 2012.
,
Aires KA, Cianciarullo AM, Carneiro SM, Villa LL, et al. (2006). Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl. Environ. Microbiol. 72: 745-752.
http://dx.doi.org/10.1128/AEM.72.1.745-752.2006
PMid:16391114 PMCid:1352212
Bazan SB, de Alencar Muniz CA, Aires KA, Cianciarullo AM, et al. (2009). Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris. Arch. Virol. 154: 1609-1617.
http://dx.doi.org/10.1007/s00705-009-0484-8
PMid:19756360
Boettner M, Steffens C, von Mering C, Bork P, et al. (2007). Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris-A comparative view on 79 human genes. J. Biotechnol. 130: 1-10.
http://dx.doi.org/10.1016/j.jbiotec.2007.02.019
PMid:17389146
Bogaert L, Martens A, Van Poucke M, Ducatelle R, et al. (2008). High prevalence of bovine papillomaviral DNA in the normal skin of equine sarcoid-affected and healthy horses. Vet. Microbiol. 129: 58-68.
http://dx.doi.org/10.1016/j.vetmic.2007.11.008
PMid:18093754
Borzacchiello G and Roperto F (2008). Bovine papillomaviruses, papillomas and cancer in cattle. Vet. Res. 39: 45.
http://dx.doi.org/10.1051/vetres:2008022
PMid:18479666
Campo MS (2002). Animal models of papillomavirus pathogenesis. Virus Res. 89: 249-261.
http://dx.doi.org/10.1016/S0168-1702(02)00193-4
Campo MS (2006). Bovine papillomavirus: Old System, New Lessons? In: Papillomavirus Biology: From Natural History to Vaccine and Beyond (Campo MS, ed.). Caister Academic Press, Wymondham.
Cereghino GP, Cereghino JL, Ilgen C and Cregg JM (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13: 329-332.
http://dx.doi.org/10.1016/S0958-1669(02)00330-0
Chambers G, Ellsmore VA, O'Brien PM, Reid SW, et al. (2003). Association of bovine papillomavirus with the equine sarcoid. J. Gen. Virol. 84: 1055-1062.
http://dx.doi.org/10.1099/vir.0.18947-0
PMid:12692268
Daly R and Hearn MT (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18: 119-138.
http://dx.doi.org/10.1002/jmr.687
PMid:15565717
Dummer LA, Conceicao FR, Nizoli LQ, de Moraes CM, et al. (2009). Cloning and expression of a truncated form of envelope glycoprotein D of Bovine herpesvirus type 5 in methylotrophic yeast Pichia pastoris. J. Virol. Methods 161: 84-90.
http://dx.doi.org/10.1016/j.jviromet.2009.05.022
PMid:19501621
Dupuy C, Buzoni-Gatel D, Touze A, Bout D, et al. (1999). Nasal immunization of mice with human papillomavirus type 16 (HPV-16) virus-like particles or with the HPV-16 L1 gene elicits specific cytotoxic T lymphocytes in vaginal draining lymph nodes. J. Virol. 73: 9063-9071.
PMid:10516012 PMCid:112938
Haas J, Park EC and Seed B (1996). Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6: 315-324.
http://dx.doi.org/10.1016/S0960-9822(02)00482-7
Kirnbauer R, Booy F, Cheng N, Lowy DR, et al. (1992). Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. U. S. A. 89: 12180-12184.
http://dx.doi.org/10.1073/pnas.89.24.12180
PMid:1334560 PMCid:50722
Kirnbauer R, Chandrachud LM, O'Neil BW, Wagner ER, et al. (1996). Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology 219: 37-44.
http://dx.doi.org/10.1006/viro.1996.0220
PMid:8623552
Kotzé L, Smith JJ, den Haan R and van Zyl WH (2011). Expression of human papillomavirus type 16 (HPV16) L1 protein in Pichia pastoris. Afr. J. Biotechnol. 10: 214-219.
Leal AM, Ferraz OP, Carvalho C, Freitas AC, et al. (2003). Quercetin induces structural chromosomal aberrations and uncommon rearrangements in bovine cells transformed by the E7 protein of bovine papillomavirus type 4. Vet. Comp. Oncol. 1: 15-21.
http://dx.doi.org/10.1046/j.1476-5829.2003.00008.x
PMid:19379326
Liu HL, Li WS, Lei T, Zheng J, et al. (2005). Expression of human papillomavirus type 16 L1 protein in transgenic tobacco plants. Acta Biochim. Biophys. Sin. 37: 153-158.
Macauley-Patrick S, Fazenda ML, McNeil B and Harvey LM (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270.
http://dx.doi.org/10.1002/yea.1208
PMid:15704221
Modis Y, Trus BL and Harrison SC (2002). Atomic model of the papillomavirus capsid. EMBO J. 21: 4754-4762.
http://dx.doi.org/10.1093/emboj/cdf494
PMid:12234916 PMCid:126290
Nasir L and Campo MS (2008). Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet. Dermatol. 19: 243-254.
http://dx.doi.org/10.1111/j.1365-3164.2008.00683.x
PMid:18927950
Palker TJ, Monteiro JM, Martin MM, Kakareka C, et al. (2001). Antibody, cytokine and cytotoxic T lymphocyte responses in chimpanzees immunized with human papillomavirus virus-like particles. Vaccine 19: 3733-3743.
http://dx.doi.org/10.1016/S0264-410X(01)00093-7
Park MA, Kim HJ and Kim HJ (2008). Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expr. Purif. 59: 175-181.
http://dx.doi.org/10.1016/j.pep.2008.01.021
PMid:18343683
Romanos M (1995). Advances in the use of Pichia pastoris for high-level gene expression. Curr. Opin. Biotechnol. 6: 527-533.
http://dx.doi.org/10.1016/0958-1669(95)80087-5
Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.
Scorer CA, Buckholz RG, Clare JJ and Romanos MA (1993). The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene 136: 111-119.
http://dx.doi.org/10.1016/0378-1119(93)90454-B
Sinclair G and Choy FY (2002). Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr. Purif. 26: 96-105.
http://dx.doi.org/10.1016/S1046-5928(02)00526-0
Yu X-W, Wang L-L and Xu Y (2009). Rhizopus chinensis lipase: Gene cloning, expression in Pichia pastoris and properties. J. Mol. Catal. B Enzym. 57: 304-311.
http://dx.doi.org/10.1016/j.molcatb.2008.10.002
Zhou J, Liu WJ, Peng SW, Sun XY, et al. (1999). Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J. Virol. 73: 4972-4982.
PMid:10233959 PMCid:112541
zur Hausen H (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2: 342-350.
http://dx.doi.org/10.1038/nrc798
PMid:12044010
“Frequency of human papillomavirus types 16, 18, 31, and 33 and sites of cervical lesions in gynecological patients from Recife, Brazil”, vol. 11, pp. 462-466, 2012.
, Ault KA (2006). Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect. Dis. Obstet. Gynecol. 2006: 1-5.
http://dx.doi.org/10.1155/IDOG/2006/40470
Baldez da Silva MF, Chagas BS, Guimaraes V, Katz LM, et al. (2009). HPV31 and HPV33 incidence in cervical samples from women in Recife, Brazil. Genet. Mol. Res. 8: 1437-1443.
http://dx.doi.org/10.4238/vol8-4gmr677
PMid:20013657
Broomall EM, Reynolds SM and Jacobson RM (2010). Epidemiology, clinical manifestations, and recent advances in vaccination against human papillomavirus. Postgrad. Med. 122: 121-129.
http://dx.doi.org/10.3810/pgm.2010.03.2129
PMid:20203463
Castro TM, Peixoto PG, Bussoloti IF, Nascimento VX, et al. (2009). Detecção de HPV na mucosa oral e genital pela técnica PCR em mulheres com diagnóstico histopatológico positivo para HPV genital. Rev. Bras. Otorrinolaringol. 75: 167-171.
http://dx.doi.org/10.1590/S0034-72992009000200002
PMid:19575099
Chaturvedi AK (2010). Beyond cervical cancer: burden of other HPV-related cancers among men and women. J. Adolesc. Health 46: S20-S26.
http://dx.doi.org/10.1016/j.jadohealth.2010.01.016
PMid:20307840
Derchain SFM and Sarian LOZ (2007). Vacinas profiláticas para o HPV. Rev. Bras. Ginecol. Obstet. 29: 281-284.
http://dx.doi.org/10.1590/S0100-72032007000600001
Giuliano A and Palefsky J (2009). Quadrivalent HPV Vaccine Efficacy Against Male Genital Disease and Infection. In: 25th International Papillomavirus Conference Clinical and Educational Workshop, Malmö.
Karlsen F, Kalantari M, Jenkins A, Pettersen E, et al. (1996). Use of multiple PCR primer sets for optimal detection of human papillomavirus. J. Clin. Microbiol. 34: 2095-2100.
PMid:8862564 PMCid:229196
Lorenzato F, Ho L, Terry G, Singer A, et al. (2000). The use of human papillomavirus typing in detection of cervical neoplasia in Recife (Brazil). Int. J. Gynecol. Cancer 10: 143-150.
http://dx.doi.org/10.1046/j.1525-1438.2000.00007.x
PMid:11240666
Muñoz N, Bosch FX, de Sanjosé S, Herrero R, et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348: 518-527.
http://dx.doi.org/10.1056/NEJMoa021641
PMid:12571259
Park RB and Androphy EJ (2002). Genetic analysis of high-risk E6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J. Virol. 76: 11359-11364.
http://dx.doi.org/10.1128/JVI.76.22.11359-11364.2002
PMid:12388696 PMCid:136782
Rama CH, Roteli-Martins CM, Derchain SFM, Longatto-Filho A, et al. (2008a). Prevalência do HPV em mulheres rastreadas para o câncer cervical. Rev. Saúde Pública 42: 123-130.
http://dx.doi.org/10.1590/S0034-89102008000100016
Rama CH, Roteli-Martins CM, Derchain SFM, Longato-Filho A, et al. (2008b). Rastreamento anterior para câncer de colo uterino em mulheres com alterações citológicas ou histológicas. Rev. Saúde Pública 42: 411-419.
http://dx.doi.org/10.1590/S0034-89102008000300004
Rambout L, Hopkins L, Hutton B and Fergusson D (2007). Prophylactic vaccination against human papillomavirus infection and disease in women: a systematic review of randomized controlled trials. CMAJ 177: 469-479.
http://dx.doi.org/10.1503/cmaj.070948
PMid:17671238 PMCid:1950172
“Bovine papillomavirus DNA in milk, blood, urine, semen, and spermatozoa of bovine papillomavirus-infected animals”, vol. 8, pp. 310-318, 2009.
, “HPV31 and HPV33 incidence in cervical samples from women in Recife, Brazil”, vol. 8, pp. 1437-1443, 2009.
, ,