Publications

Found 4 results
Filters: Author is L.C. da Maia  [Clear All Filters]
2016
I. L. Vighi, Benitez, L. C., Amaral, M. Ndo, Auler, P. A., Moraes, G. P., Rodrigues, G. S., da Maia, L. C., Pinto, L. S., Braga, E. J. B., Vighi, I. L., Benitez, L. C., Amaral, M. Ndo, Auler, P. A., Moraes, G. P., Rodrigues, G. S., da Maia, L. C., Pinto, L. S., and Braga, E. J. B., Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the following Brazilian funding agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS). REFERENCES Ara N, Nakkanong K, Lv W, Yang J, et al (2013). Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (“Cucurbita maxima” and “Cucurbita moschata”) and their interspecific inbred line “Maxchata”. Int. J. Mol. Sci. 14: 24008-24028. http://dx.doi.org/10.3390/ijms141224008 Ashraf M, et al (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27: 84-93. http://dx.doi.org/10.1016/j.biotechadv.2008.09.003 Azevedo RA, Alas RM, Smith RJ, Lea PJ, et al (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol. Plant. 104: 280-229. http://dx.doi.org/10.1034/j.1399-3054.1998.1040217.x Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. PubMed http://dx.doi.org/http://dx.doi.org/10.1016/0003-2697(76)90527-3 Breusegem FV, Vranová E, Dat JF, Inzé D, et al (2001). The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405-414. http://dx.doi.org/10.1016/S0168-9452(01)00452-6 Chakraborty A, Bhattacharjee S, et al (2015). Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J. Plant Physiol. 176: 65-77. http://dx.doi.org/10.1016/j.jplph.2014.10.016 Chinnusamy V, Zhu J, Zhu JK, et al (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12: 444-451. http://dx.doi.org/10.1016/j.tplants.2007.07.002 Dubey RS (2011). Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants (Gupta SD, ed.). Science Publishers, Enfield, UK. Fukamatsu Y, Yabe N, Hasunuma K, et al (2003). Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol. 44: 982-989. http://dx.doi.org/10.1093/pcp/pcg140 Gill SS, Tuteja N, et al (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016 Gondim FA, Gomes-Filho E, Costa JH, Mendes Alencar NL, et al. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiol. Biochem. 56: 62-71. PubMed http://dx.doi.org/http://dx.doi.org/10.1016/j.plaphy.2012.04.012 Heath RL, Packer L, et al (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198. http://dx.doi.org/10.1016/0003-9861(68)90654-1 Huang M, Guo Z, et al (2005). Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 49: 81-84. http://dx.doi.org/10.1007/s00000-005-1084-3 Khare T, Kumar V, Kishor PB, et al (2015). Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252: 1149-1165. http://dx.doi.org/10.1007/s00709-014-0749-2 Komatsu S, Hossain Z, et al (2013). Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop. Front. Plant Sci. 4: 71. http://dx.doi.org/10.3389/fpls.2013.00071 Kotchoni SO, Gachomo EW, et al (2006). The reactive oxygen species network pathways:an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 31: 389-404. http://dx.doi.org/10.1007/BF02704112 Lata C, Prasad M, et al (2011). Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62: 4731-4748. http://dx.doi.org/10.1093/jxb/err210 Liao Y, Zou HF, Wei W, Hao YJ, et al (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228: 225-240. http://dx.doi.org/10.1007/s00425-008-0731-3 Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Luo H, Song F, Goodman RM, Zheng Z, et al (2005). Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol (Stuttg) 7: 459-468. http://dx.doi.org/10.1055/s-2005-865851 Mahajan S, Tuteja N, et al (2005). Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158. http://dx.doi.org/10.1016/j.abb.2005.10.018 Miller G, Shulaev V, Mittler R, et al (2008). Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133: 481-489. http://dx.doi.org/10.1111/j.1399-3054.2008.01090.x Mohanty B, Krishnan SP, Swarup S, Bajic VB, et al (2005). Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann. Bot. (Lond.) 96: 669-681. http://dx.doi.org/10.1093/aob/mci219 Moraes GP, Benitez LC, do Amaral MN, Vighi IL, et al (2015). Evaluation of reference genes for RT-qPCR studies in the leaves of rice seedlings under salt stress. Genet. Mol. Res. 14: 2384-2398. http://dx.doi.org/10.4238/2015.March.27.24 Munns R, Tester M, et al (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911 Qiu P, et al (2003). Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem. Biophys. Res. Commun. 309: 495-501. http://dx.doi.org/10.1016/j.bbrc.2003.08.052 Singh RK, Redoña E and Refuerzo L (2010). Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In: Abiotic stress adaptation in plants: physiological, molecular and genomics foundation (Pareek A, Sopory SK, Bohnert HJ and Govindjee, eds.). Springer Science and Business Media LLC, New York. Turan S, Tripathy BC, et al (2013). Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250: 209-222. http://dx.doi.org/10.1007/s00709-012-0395-5 Ulker B, Somssich IE, et al (2004). WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7: 491-498. http://dx.doi.org/10.1016/j.pbi.2004.07.012 Velikova V, Yordanov I, Edreva A, et al (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151: 59-66. http://dx.doi.org/10.1016/S0168-9452(99)00197-1 Verslues PE, Batelli G, Grillo S, Agius F, et al (2007). Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol. Cell. Biol. 27: 7771-7780. http://dx.doi.org/10.1128/MCB.00429-07 Wang YC, Qu GZ, Li HY, Wu YJ, et al (2010). Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol. Biol. Rep. 37: 1119-1124. http://dx.doi.org/10.1007/s11033-009-9884-9 Weising K, Nybom H, Wolff K and Kahal G (2005). DNA fingerprinting in plants and fungi: principles, methods and applications. 2nd edn. CRC Press, London, UK. Xue GP, et al (2002). Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res. 30: e77. http://dx.doi.org/10.1093/nar/gnf076 Yamaguchi-Shinozaki K, Shinozaki K, et al (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10: 88-94. http://dx.doi.org/10.1016/j.tplants.2004.12.012 Yamane K, Mitsuya S, Taniguchi M, Miyake H, et al (2010). Transcription profiles of genes encoding catalase and ascorbate peroxidase in the rice leaf tissues under salinity. Plant Prod. Sci. 13: 164-168. http://dx.doi.org/10.1626/pps.13.164 Yang J, Chen X, Zhu C, Peng X, et al (2015). RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 16: 959. http://dx.doi.org/10.1186/s12864-015-2141-9 Yoshida S, Forno DA, Cock JH and Gomez KA (1976). Laboratory manual for physiological studies of rice. 3rd edn. International Rice Research Institutes, Manila, Philippines. Zeng HW, Cai YJ, Liao XR, Qian SL, et al (2010). Optimization of catalase production and purification and characterization of a novel cold-adapted Cat-2 from mesophilic bacterium Serratia marcescens SYBC-01. Ann. Microbiol. 60: 701-708. http://dx.doi.org/10.1007/s13213-010-0116-2 Zhang YP, e ZG, Jiang H, Wang L, et al (2015). A comparative study of stress-related gene expression under single stress and intercross stress in rice. Genet. Mol. Res. 14: 3702-3717. http://dx.doi.org/10.4238/2015.April.17.20
I. L. Vighi, Benitez, L. C., Amaral, M. Ndo, Auler, P. A., Moraes, G. P., Rodrigues, G. S., da Maia, L. C., Pinto, L. S., Braga, E. J. B., Vighi, I. L., Benitez, L. C., Amaral, M. Ndo, Auler, P. A., Moraes, G. P., Rodrigues, G. S., da Maia, L. C., Pinto, L. S., and Braga, E. J. B., Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the following Brazilian funding agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS). REFERENCES Ara N, Nakkanong K, Lv W, Yang J, et al (2013). Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (“Cucurbita maxima” and “Cucurbita moschata”) and their interspecific inbred line “Maxchata”. Int. J. Mol. Sci. 14: 24008-24028. http://dx.doi.org/10.3390/ijms141224008 Ashraf M, et al (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27: 84-93. http://dx.doi.org/10.1016/j.biotechadv.2008.09.003 Azevedo RA, Alas RM, Smith RJ, Lea PJ, et al (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol. Plant. 104: 280-229. http://dx.doi.org/10.1034/j.1399-3054.1998.1040217.x Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. PubMed http://dx.doi.org/http://dx.doi.org/10.1016/0003-2697(76)90527-3 Breusegem FV, Vranová E, Dat JF, Inzé D, et al (2001). The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405-414. http://dx.doi.org/10.1016/S0168-9452(01)00452-6 Chakraborty A, Bhattacharjee S, et al (2015). Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J. Plant Physiol. 176: 65-77. http://dx.doi.org/10.1016/j.jplph.2014.10.016 Chinnusamy V, Zhu J, Zhu JK, et al (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12: 444-451. http://dx.doi.org/10.1016/j.tplants.2007.07.002 Dubey RS (2011). Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants (Gupta SD, ed.). Science Publishers, Enfield, UK. Fukamatsu Y, Yabe N, Hasunuma K, et al (2003). Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol. 44: 982-989. http://dx.doi.org/10.1093/pcp/pcg140 Gill SS, Tuteja N, et al (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016 Gondim FA, Gomes-Filho E, Costa JH, Mendes Alencar NL, et al. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiol. Biochem. 56: 62-71. PubMed http://dx.doi.org/http://dx.doi.org/10.1016/j.plaphy.2012.04.012 Heath RL, Packer L, et al (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198. http://dx.doi.org/10.1016/0003-9861(68)90654-1 Huang M, Guo Z, et al (2005). Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant. 49: 81-84. http://dx.doi.org/10.1007/s00000-005-1084-3 Khare T, Kumar V, Kishor PB, et al (2015). Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252: 1149-1165. http://dx.doi.org/10.1007/s00709-014-0749-2 Komatsu S, Hossain Z, et al (2013). Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop. Front. Plant Sci. 4: 71. http://dx.doi.org/10.3389/fpls.2013.00071 Kotchoni SO, Gachomo EW, et al (2006). The reactive oxygen species network pathways:an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 31: 389-404. http://dx.doi.org/10.1007/BF02704112 Lata C, Prasad M, et al (2011). Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62: 4731-4748. http://dx.doi.org/10.1093/jxb/err210 Liao Y, Zou HF, Wei W, Hao YJ, et al (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228: 225-240. http://dx.doi.org/10.1007/s00425-008-0731-3 Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Luo H, Song F, Goodman RM, Zheng Z, et al (2005). Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol (Stuttg) 7: 459-468. http://dx.doi.org/10.1055/s-2005-865851 Mahajan S, Tuteja N, et al (2005). Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158. http://dx.doi.org/10.1016/j.abb.2005.10.018 Miller G, Shulaev V, Mittler R, et al (2008). Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133: 481-489. http://dx.doi.org/10.1111/j.1399-3054.2008.01090.x Mohanty B, Krishnan SP, Swarup S, Bajic VB, et al (2005). Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann. Bot. (Lond.) 96: 669-681. http://dx.doi.org/10.1093/aob/mci219 Moraes GP, Benitez LC, do Amaral MN, Vighi IL, et al (2015). Evaluation of reference genes for RT-qPCR studies in the leaves of rice seedlings under salt stress. Genet. Mol. Res. 14: 2384-2398. http://dx.doi.org/10.4238/2015.March.27.24 Munns R, Tester M, et al (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911 Qiu P, et al (2003). Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem. Biophys. Res. Commun. 309: 495-501. http://dx.doi.org/10.1016/j.bbrc.2003.08.052 Singh RK, Redoña E and Refuerzo L (2010). Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In: Abiotic stress adaptation in plants: physiological, molecular and genomics foundation (Pareek A, Sopory SK, Bohnert HJ and Govindjee, eds.). Springer Science and Business Media LLC, New York. Turan S, Tripathy BC, et al (2013). Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250: 209-222. http://dx.doi.org/10.1007/s00709-012-0395-5 Ulker B, Somssich IE, et al (2004). WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7: 491-498. http://dx.doi.org/10.1016/j.pbi.2004.07.012 Velikova V, Yordanov I, Edreva A, et al (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151: 59-66. http://dx.doi.org/10.1016/S0168-9452(99)00197-1 Verslues PE, Batelli G, Grillo S, Agius F, et al (2007). Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol. Cell. Biol. 27: 7771-7780. http://dx.doi.org/10.1128/MCB.00429-07 Wang YC, Qu GZ, Li HY, Wu YJ, et al (2010). Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol. Biol. Rep. 37: 1119-1124. http://dx.doi.org/10.1007/s11033-009-9884-9 Weising K, Nybom H, Wolff K and Kahal G (2005). DNA fingerprinting in plants and fungi: principles, methods and applications. 2nd edn. CRC Press, London, UK. Xue GP, et al (2002). Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res. 30: e77. http://dx.doi.org/10.1093/nar/gnf076 Yamaguchi-Shinozaki K, Shinozaki K, et al (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10: 88-94. http://dx.doi.org/10.1016/j.tplants.2004.12.012 Yamane K, Mitsuya S, Taniguchi M, Miyake H, et al (2010). Transcription profiles of genes encoding catalase and ascorbate peroxidase in the rice leaf tissues under salinity. Plant Prod. Sci. 13: 164-168. http://dx.doi.org/10.1626/pps.13.164 Yang J, Chen X, Zhu C, Peng X, et al (2015). RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 16: 959. http://dx.doi.org/10.1186/s12864-015-2141-9 Yoshida S, Forno DA, Cock JH and Gomez KA (1976). Laboratory manual for physiological studies of rice. 3rd edn. International Rice Research Institutes, Manila, Philippines. Zeng HW, Cai YJ, Liao XR, Qian SL, et al (2010). Optimization of catalase production and purification and characterization of a novel cold-adapted Cat-2 from mesophilic bacterium Serratia marcescens SYBC-01. Ann. Microbiol. 60: 701-708. http://dx.doi.org/10.1007/s13213-010-0116-2 Zhang YP, e ZG, Jiang H, Wang L, et al (2015). A comparative study of stress-related gene expression under single stress and intercross stress in rice. Genet. Mol. Res. 14: 3702-3717. http://dx.doi.org/10.4238/2015.April.17.20