Publications

Found 23 results
Filters: Author is B.B. Li  [Clear All Filters]
2016
K. Yu, Ji, Y., Wang, H., Xuan, Q. K., Li, B. B., Xiao, J. J., Sun, W., and Kong, X. Q., Association of miR-196a2, miR-27a, and miR-499 polymorphisms with isolated congenital heart disease in a Chinese population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by grants from the Priority Academic Program Development of Jiangsu Higher Education Institutions (grant #PAPD2014-2016). Dr. Wei Sun is an Assistant Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Dr. Xiangqing Kong is a Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine. REFERENCESBartel DP, et al (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233. http://dx.doi.org/10.1016/j.cell.2009.01.002 Bruneau BG, et al (2008). The developmental genetics of congenital heart disease. Nature 451: 943-948. http://dx.doi.org/10.1038/nature06801 Callis TE, Pandya K, Seok HY, Tang RH, et al (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119: 2772-2786. http://dx.doi.org/10.1172/JCI36154 Chan-Thomas PS, Thompson RP, Robert B, Yacoub MH, et al (1993). Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev. Dyn. 197: 203-216. http://dx.doi.org/10.1002/aja.1001970305 Chen J, Wang DZ, et al (2012). microRNAs in cardiovascular development. J. Mol. Cell. Cardiol. 52: 949-957. http://dx.doi.org/10.1016/j.yjmcc.2012.01.012 Condorelli G, Latronico MV, Cavarretta E, et al (2014). microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol. 63: 2177-2187. http://dx.doi.org/10.1016/j.jacc.2014.01.050 Hoffman AE, Zheng T, Yi C, Leaderer D, et al (2009). microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69: 5970-5977. http://dx.doi.org/10.1158/0008-5472.CAN-09-0236 Hoffman JIe, et al (2013). The global burden of congenital heart disease. Cardiovasc. J. Afr. 24: 141-145. http://dx.doi.org/10.5830/CVJA-2013-028 Hu Z, Liang J, Wang Z, Tian T, et al (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat. 30: 79-84. http://dx.doi.org/10.1002/humu.20837 Kawasaki H, Taira K, et al (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf) 2004: 211-212. http://dx.doi.org/10.1093/nass/48.1.211 Lander ES, Linton LM, Birren B, Nusbaum C, International Human Genome Sequencing Consortiumet al (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. http://dx.doi.org/10.1038/35057062 Lewis BP, Burge CB, Bartel DP, et al (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20. http://dx.doi.org/10.1016/j.cell.2004.12.035 Li M, Li RJ, Bai H, Xiao P, et al (2016). Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15027516 Mishra PJ, Bertino JR, et al (2009). MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10: 399-416. http://dx.doi.org/10.2217/14622416.10.3.399 Nishi H, Ono K, Horie T, Nagao K, et al (2011). MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol. Cell. Biol. 31: 744-755. http://dx.doi.org/10.1128/MCB.00581-10 Patrushev LI, Kovalenko TF, et al (2014). Functions of noncoding sequences in mammalian genomes. Biochemistry (Mosc.) 79: 1442-1469. http://dx.doi.org/10.1134/S0006297914130021 Ryan BM, Robles AI, Harris CC, et al (2010). Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10: 389-402. http://dx.doi.org/10.1038/nrc2867 Saunders MA, Liang H, Li WH, et al (2007). Human polymorphism at microRNAs and microRNA target sites. Proc. Natl. Acad. Sci. USA 104: 3300-3305. http://dx.doi.org/10.1073/pnas.0611347104 Schonrock N, Harvey RP, Mattick JS, et al (2012). Long noncoding RNAs in cardiac development and pathophysiology. Circ. Res. 111: 1349-1362. http://dx.doi.org/10.1161/CIRCRESAHA.112.268953 Sluijter JP, van Mil A, van Vliet P, Metz CH, et al (2010). MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler. Thromb. Vasc. Biol. 30: 859-868. http://dx.doi.org/10.1161/ATVBAHA.109.197434 Srivastava D, et al (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126: 1037-1048. http://dx.doi.org/10.1016/j.cell.2006.09.003 Sun Q, Gu H, Zeng Y, Xia Y, et al (2010). Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci. 101: 2241-2247. http://dx.doi.org/10.1111/j.1349-7006.2010.01667.x Tanzer A, Amemiya CT, Kim CB, Stadler PF, et al (2005). Evolution of microRNAs located within Hox gene clusters. J. Exp. Zoolog. B Mol. Dev. Evol. 304: 75-85. http://dx.doi.org/10.1002/jez.b.21021 Wang N, Tian ZQ, Li Y, Zhou RM, et al (2013). An A/G polymorphism rs3746444 in miR-499 is associated with increased cancer risk: a meta-analysis. Genet. Mol. Res. 12: 3955-3964. http://dx.doi.org/10.4238/2013.September.23.14 Wu M, Jolicoeur N, Li Z, Zhang L, et al (2008). Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29: 1710-1716. http://dx.doi.org/10.1093/carcin/bgn073 Xu J, Hu Z, Xu Z, Gu H, et al (2009). Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30: 1231-1236. http://dx.doi.org/10.1002/humu.21044 Yu ZB, Han SP, Chen X, Sun XF, et al (2014). Systematic review of the prevalence of perinatal congenital heart disease. Chinese Journal of Evidence Based Pediatrics 9: 252-259. Zeng Y, Yi R, Cullen BR, et al (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24: 138-148. http://dx.doi.org/10.1038/sj.emboj.7600491 Zhang Y, Jin SQ, Li WX, Gao GQ, et al (2016). Association between RNF41 gene c.-206 T > A genetic polymorphism and risk of congenital heart diseases in the Chinese Mongolian population. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15028089  
X. Q. Mao, Li, Z. B., Ning, Y. F., Shangguan, J. B., Yuan, Y., Huang, Y. S., Li, B. B., Mao, X. Q., Li, Z. B., Ning, Y. F., Shangguan, J. B., Yuan, Y., Huang, Y. S., and Li, B. B., Development of novel polymorphic microsatellite markers in Siganus fuscescens, vol. 15, p. -, 2016.
X. Q. Mao, Li, Z. B., Ning, Y. F., Shangguan, J. B., Yuan, Y., Huang, Y. S., Li, B. B., Mao, X. Q., Li, Z. B., Ning, Y. F., Shangguan, J. B., Yuan, Y., Huang, Y. S., and Li, B. B., Development of novel polymorphic microsatellite markers in Siganus fuscescens, vol. 15, p. -, 2016.
C. S. Hou, Li, B. B., Deng, S., Diao, Q. Y., Hou, C. S., Li, B. B., Deng, S., and Diao, Q. Y., Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies, vol. 15, p. -, 2016.
C. S. Hou, Li, B. B., Deng, S., Diao, Q. Y., Hou, C. S., Li, B. B., Deng, S., and Diao, Q. Y., Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies, vol. 15, p. -, 2016.
X. Q. Mao, Li, Z. B., Yuan, Y., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yang, M., Li, B. B., Mao, X. Q., Li, Z. B., Yuan, Y., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yang, M., and Li, B. B., Isolation and characterization of eight novel microsatellite markers in Acanthopagrus schlegelii, vol. 15, p. -, 2016.
X. Q. Mao, Li, Z. B., Yuan, Y., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yang, M., Li, B. B., Mao, X. Q., Li, Z. B., Yuan, Y., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yang, M., and Li, B. B., Isolation and characterization of eight novel microsatellite markers in Acanthopagrus schlegelii, vol. 15, p. -, 2016.
Y. F. Ning, Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., and Shangguan, J. B., Isolation and characterization of microsatellite markers in Atrina vexillum Born, vol. 15, p. -, 2016.
Y. F. Ning, Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., and Shangguan, J. B., Isolation and characterization of microsatellite markers in Atrina vexillum Born, vol. 15, p. -, 2016.
Y. F. Ning, Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Huang, Y. S., Mao, X. Q., Li, B. B., Yuan, Y., and Shangguan, J. B., Isolation and characterization of microsatellite markers in Atrina vexillum Born, vol. 15, p. -, 2016.
Z. B. Li, Ning, Y. F., Shangguan, J. B., Li, B. B., Mao, X. Q., Huang, Y. S., Yuan, Y., Li, Z. B., Ning, Y. F., Shangguan, J. B., Li, B. B., Mao, X. Q., Huang, Y. S., and Yuan, Y., Isolation and characterization of microsatellite markers in Ruditapes philippinarum, vol. 15, p. -, 2016.
Z. B. Li, Ning, Y. F., Shangguan, J. B., Li, B. B., Mao, X. Q., Huang, Y. S., Yuan, Y., Li, Z. B., Ning, Y. F., Shangguan, J. B., Li, B. B., Mao, X. Q., Huang, Y. S., and Yuan, Y., Isolation and characterization of microsatellite markers in Ruditapes philippinarum, vol. 15, p. -, 2016.
B. B. Li, Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., Mao, X. Q., Li, B. B., Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., Mao, X. Q., Li, B. B., Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., and Mao, X. Q., Isolation and characterization of new microsatellite loci in Fenneropenaeus penicillatus, vol. 15, p. -, 2016.
B. B. Li, Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., Mao, X. Q., Li, B. B., Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., Mao, X. Q., Li, B. B., Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., and Mao, X. Q., Isolation and characterization of new microsatellite loci in Fenneropenaeus penicillatus, vol. 15, p. -, 2016.
B. B. Li, Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., Mao, X. Q., Li, B. B., Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., Mao, X. Q., Li, B. B., Li, Z. B., Ning, Y. F., Shangguan, J. B., Huang, Y. S., Yuan, Y., and Mao, X. Q., Isolation and characterization of new microsatellite loci in Fenneropenaeus penicillatus, vol. 15, p. -, 2016.
Y. F. Ning, Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., and Shangguan, J. B., Isolation and characterization of novel microsatellite markers in Mercenaria mercenaria, vol. 15, p. -, 2016.
Y. F. Ning, Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., and Shangguan, J. B., Isolation and characterization of novel microsatellite markers in Mercenaria mercenaria, vol. 15, p. -, 2016.
Y. F. Ning, Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., Shangguan, J. B., Ning, Y. F., Li, Z. B., Mao, X. Q., Li, B. B., Huang, Y. S., Yuan, Y., and Shangguan, J. B., Isolation and characterization of novel microsatellite markers in Mercenaria mercenaria, vol. 15, p. -, 2016.
B. B. Li, Li, Z. B., Shangguan, J. B., Ning, Y. F., Yuan, Y., Huang, Y. S., and Mao, X. Q., Screening and characterization of novel microsatellite loci in Lateolabrax japonicus, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Key Program from Science and Technology Projects of Xiamen (#3502Z20143017) and the Science and Technology Plan Projects of Fujian Province (#2015N0010). REFERENCESBotstein D, White RL, Skolnick M, Davis RW, et al (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331. Du T, Huang Y, Tan XY, Zhang GL, et al (2013). Difference analysis on growth characteristic of one year old Lateolabrax japonicus cultured at different salinity. Oceanol. Limnol. Sin. 44: 337-341. Fan JJ, Bai JJ, Li XH, He XP, et al (2009). [Identification of microsatellite markers associated with growth traits in largemouth bass (Micropterus salmoides L.)]. Yi Chuan 31: 515-522. http://dx.doi.org/10.3724/SP.J.1005.2009.00515 Fang DA, Zhou YF, Duan JR, Zhang MY, et al (2015). Screening potential SSR markers of the anadromous fish Coilia nasus by de novo transcriptome analysis using Illumina sequencing. Genet. Mol. Res. 14: 14181-14188. http://dx.doi.org/10.4238/2015.November.13.1 Goldstein DB and Schlötterer C (1999). Microsatellites: Evolution and applications. Oxford University Press, Oxford. Herbinger CM, Doyle RW, Taggart CT, Lochmann SE, et al (1997). Family relationships and effective population size in a natural cohort of Atlantic cod (Gadus morhua) larvae. Can. J. Fish. Aquat. Sci. 54: 11-18. http://dx.doi.org/10.1139/f96-161 Hu ZM, Gao TX, Han ZQ, Song L, et al (2007). Studies on genetic differentiation of the spotted sea bass (Lateolabrax maculatus) and Japanese sea bass (Lateolabrax japonicus). J. Ocean Univ. China 37: 413-418. Jackson TR (1995). Linkage analysis of molecular markers and a search for quantitative trait loci for upper temperature tolerance in rainbow trout (Oncorhynchus mykiss). Master’s thesis University of Guelph, Canada. Jiang X, Liao MJ, Liu YJ, Gao TX, et al (2007). Isolation and characterization of 22 polymorphic microsatellite DNA markers of Japanese sea bass (Laterolabrax japonicus). Mol. Ecol. Notes 7: 492-494. http://dx.doi.org/10.1111/j.1471-8286.2006.01631.x Jiang X, Yang G, Liao M, Liu Y, et al (2008). Microsatellite DNA polymorphism of Japanese sea bass (Laterolabrax japonicus) inhabiting Chinese and Japanese coasts. J. Appl. Ichthyology 24: 180-186. http://dx.doi.org/10.1111/j.1439-0426.2007.01016.x Jiang X, Yang GP, Wei QW, Zou GW, et al (2009). Analysis of the genetic structure of spotted sea bass (Lateolabrax maculatus) inhabiting the Chinese coast. J. Ocean Univ. China 39: 271-274. Lee WJ, Kocher TD, et al (1996). Microsatellite DNA markers for genetic mapping in Oreochromis niloticus. J. Fish Biol. 49: 169-171. Li L, Xue LY, Wei JY, et al (2006). Studies on DNA diversity of the cultured Lateolabrax japonicus. Reserv. Fish 26: 13-14. Li MY, Zhao MZ, Zhong AH, Xue LY, et al (2003). Comparative analysis of RAPD genetic variation between two stocks of seabass (Lateolabrax japonicus). Oceanol. Limnol. Sin. 34: 618-624. Li Q, et al (2006). Development of microsatellite DNA markers and their applications in genetic studies of marine mollusks. J. Fish. Sci. China 3: 502-509. Liang SX, Sun XW, Bai JJ, Gao JS, et al (2008). Genetic analysis for cultured largemouth bass (Micropterus salmoides) in China with microsatellites. Acta Hydrobiol. Sin 32: 694-700. http://dx.doi.org/10.3724/SP.J.1035.2008.00694 Liu YG, Liu CY, Li FZ, Li ZX, et al (2009). Development of microsatellite markers in sea perch, Lateolabrax japonicus, from codominant amplified fragment length polymorphism bands. J. World Aquacult. Soc. 40: 522-530. http://dx.doi.org/10.1111/j.1749-7345.2009.00277.x Lou D, Gao TX, Zhang XM, Yang YH, et al (2000). Advances on germplasm resources study of Lateolabrax. J. Zhejiang Ocean. Univ. 19: 162-167. Lü BZ, et al (1994). Does the polymorphism information content equal the heterozygosity. Hereditas 16: 31-33. Ning YF, Li ZB, Li QH, Dai G, et al (2015). Isolation and characterization of novel microsatellite markers for molecular genetic diversity in Siganus fuscescens. Genet. Mol. Res. 14: 89-92. http://dx.doi.org/10.4238/2015.January.15.11 Sun GY, Zhu YY, Chen JG, Zhou ZL, et al (1994). Growth and feeding habits of Japanese sea-bass, Lateolabrax japonicus, in the estuary of Yangze river. J. Fish. China 18: 183-189. Weber JL, May PE, et al (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396. Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2000). POPGENE 32, Microsoft Windows-based freeware for population genetics analysis. Version 1.32, Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton. Zhao Y, Ji XS, Zeng YQ, Ding L, et al (2011). [Isolation of microsatellite markers for Lateolabrax japonicus and polymorphic analysis]. Zool. Res. 32: 515-520. Zhou L, Liu JX, Gui JF, et al (2001). Preliminary investigation on genetic diversity of gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) detected by microsatellite DNA. Zool. Res. 22: 257-264. Zhu B, Chang JB, et al (1999). Microsatellite DNA and its application in fishes. Acta Hydrobiol. Sinica 23: 721-728.