Publications

Found 16 results
Filters: Author is M.G.C.D. Peixoto  [Clear All Filters]
2016
B. C. Perez, Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., Balieiro, J. C. C., Perez, B. C., Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., Balieiro, J. C. C., Perez, B. C., Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., and Balieiro, J. C. C., Genetic analysis of oocyte and embryo production traits in Guzerá breed donors and their associations with age at first calving, vol. 15, p. -, 2016.
B. C. Perez, Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., Balieiro, J. C. C., Perez, B. C., Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., Balieiro, J. C. C., Perez, B. C., Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., and Balieiro, J. C. C., Genetic analysis of oocyte and embryo production traits in Guzerá breed donors and their associations with age at first calving, vol. 15, p. -, 2016.
B. C. Perez, Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., Balieiro, J. C. C., Perez, B. C., Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., Balieiro, J. C. C., Perez, B. C., Peixoto, M. G. C. D., Bruneli, F. T., Ramos, P. V. B., and Balieiro, J. C. C., Genetic analysis of oocyte and embryo production traits in Guzerá breed donors and their associations with age at first calving, vol. 15, p. -, 2016.
S. Wohlres-Viana, Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., Viana, J. H. M., Wohlres-Viana, S., Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., and Viana, J. H. M., Polymorphisms and alternative splicing of the luteinizing hormone receptor of dairy cattle, vol. 15, p. -, 2016.
S. Wohlres-Viana, Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., Viana, J. H. M., Wohlres-Viana, S., Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., and Viana, J. H. M., Polymorphisms and alternative splicing of the luteinizing hormone receptor of dairy cattle, vol. 15, p. -, 2016.
2013
D. J. A. Santos, Peixoto, M. G. C. D., Borquis, R. R. Aspilcueta, Verneque, R. S., Panetto, J. C. C., and Tonhati, H., Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (Bos indicus) cows, vol. 12, pp. 143-153, 2013.
Ali TE and Schaeffer LR (1987). Accounting for covariances among test day milk yields in dairy cows. Can. J. Anim. Sci. 67: 637-644. http://dx.doi.org/10.4141/cjas87-067   Araújo CV, Torres RA, Costa CN, Torres Filho RA, et al. (2006). Uso de modelos de regressão aleatória para descrever a variação genética da produção de leite na raça Holandesa. Rev. Bras. Zootec. 35: 975-981. http://dx.doi.org/10.1590/S1516-35982006000400006   Bignardi AB, El Faro L, Cardoso VL, Machado PF, et al. (2009). Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livest. Prod. Sci. 123: 1-7. http://dx.doi.org/10.1016/j.livsci.2008.09.021   Brotherstone S, White IMS and Meyer K (2000). Genetic modeling of daily yield using orthogonal polynomials and parametric curves. Anim. Sci. 70: 407-415.   Cobuci JA, Euclydes RF, Verneque RS, Teodoro RL, et al. (2000). Curva de lactação na raça Guzerá. Rev. Bras. Zootec. 29: 1332-1339. http://dx.doi.org/10.1590/S1516-35982000000500011   Cobuci JA, Euclydes RF, Lopes PS, Costa CN, et al. (2005). Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model. Genet. Mol. Biol. 28: 75-83. http://dx.doi.org/10.1590/S1415-47572005000100013   Costa CN, Melo CMR, Machado CHC, Freitas AF, et al. (2005). Parâmetros genéticos para a produção de leite de controles individuais de vacas da raça Gir Leiteiro estimados com modelos de repetibilidade e regressão aleatória. Rev. Bras. Zootec. 34: 1519-1530. http://dx.doi.org/10.1590/S1516-35982005000500012   de Melo CM, Packer IU, Costa CN and Machado PF (2007). Genetic parameters for test day milk yields of first lactation Holstein cows by random regression models. Animal 1: 325-334. http://dx.doi.org/10.1017/S1751731107685036 PMid:22444330   El Faro L and Albuquerque LG (2003). Utilização de modelos de regressão aleatória para produção de leite no dia do controle, com diferentes estruturas de variâncias residuais. Rev. Bras. Zootec. 32: 1104-1113. http://dx.doi.org/10.1590/S1516-35982003000500010   Freitas LS, Silva MA, Verneque RS, Valente BD, et al. (2010). Avaliação da persistência na lactação da raça Guzerá, utilizando modelos de regressão aleatória. Arq. Bras. Med. Vet. Zootec. 62: 401-408. http://dx.doi.org/10.1590/S0102-09352010000200021   Freitas MS (2003). Utilização de Modelos de Regressão Aleatória na Avaliação Genética de Animais da Raça Girolando. Master's tesis, Universidade Federal de Viçosa, Viçosa.   Herrera LGG, El Faro L, Albuquerque LG and Tonhati H et al. (2008). Estimativas de parâmetros genéticos para produção de leite e persistência da lactação em vacas Gir, aplicando modelos de regressão aleatória. Rev. Bras. Zootec. 37: 1584-1594. http://dx.doi.org/10.1590/S1516-35982008000900009   Jakobsen JH, Madsen P, Jensen J, Pedersen J, et al. (2002). Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. J. Dairy Sci. 85: 1607-1616. http://dx.doi.org/10.3168/jds.S0022-0302(02)74231-8   Jamrozik J and Schaeffer LR (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 80: 762-770. http://dx.doi.org/10.3168/jds.S0022-0302(97)75996-4   Kettunen A, Mäntysaari EA and Pösö J (2000). Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci. 66: 251-261. http://dx.doi.org/10.1016/S0301-6226(00)00166-4   Kirkpatrick M, Lofsvold D and Bulmer M (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 124: 979-993. PMid:2323560 PMCid:1203988   Lidauer M and Mäntysaari EA (1999). Multiple trait reduced rank random regression test-day model for production traits. Interbull Bull. 22: 74-80.   López-Romero P and Caraba-o MJ (2003). Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livest. Prod. Sci. 82: 81-96. http://dx.doi.org/10.1016/S0301-6226(03)00003-4   Meyer K (1999). Estimates of genetic and phenotypic covariance functions for postweaning growth and mature weight of beef cows. J. Anim. Breed. Genet. 116: 181-205. http://dx.doi.org/10.1046/j.1439-0388.1999.00193.x   Meyer K (2006). WOMBAT - A Program for Mixed Model Analyses by Restricted Maximum Likelihood. User Notes. Animal Genetics and Breeding Unit, Amidale.   Meyer K and Hill WG (1997). Estimation of genetic and phenotypic covariance functions for longitudinal or "repeated" records by restricted maximum likelihood. Livest. Prod. Sci. 47: 185-200. http://dx.doi.org/10.1016/S0301-6226(96)01414-5   Pereira RJ, Lopes OS, Verneque RS, Santana Júnior ML, et al. (2010). Funções de covariância para produção de leite no dia do controle em bovinos Gir leiteiro. Pesq. Agropec. Bras. 45: 1303-1311. http://dx.doi.org/10.1590/S0100-204X2010001100011   Schawarz G (1978). Estimating the dimension of a model. Ann. Statist. 6: 461-464. http://dx.doi.org/10.1214/aos/1176344136   Takma C and Akabas Y (2009). Heterogeneity of residual variances of test day milk yields estimated by random regression model in Turkish Holsteins. J. Anim. Vet. Adv. 8: 782-787.   Wilmink JBM (1987). Adjustment of test-day milk, fat and protein yields for age, season and stage of lactation. Livest. Prod. Sci. 16: 335-348. http://dx.doi.org/10.1016/0301-6226(87)90003-0   Wolfinger R (1993). Covariance structure selection in general mixed models. Commun. Stat. 22: 1079-1106. http://dx.doi.org/10.1080/03610919308813143
P. A. S. Fonseca, Rosse, I. C., DeMiranda, M., Machado, M. A., Verneque, R. S., Peixoto, M. G. C. D., and Carvalho, M. R. S., A new tetra-primer ARMS-PCR for genotyping bovine kappa-casein polymorphisms, vol. 12, pp. 6521-6526, 2013.
2011
A. A. Silva, Azevedo, A. L. S., Gasparini, K., Verneque, R. S., Peixoto, M. G. C. D., Panetto, B. R., Guimarães, S. E. F., and Machado, M. A., Quantitative trait loci affecting lactose and total solids on chromosome 6 in Brazilian Gir dairy cattle, vol. 10, pp. 3817-3827, 2011.
Arnold JW, Bertrand JK and Benyshek LL (1992). Animal model for genetic evaluation of multibreed data. J. Anim. Sci. 70: 3322-3332. PMid:1459893   Ashwell MS, Van Tassell CP and Sonstegard TS (2001). A genome scan to identify quantitative trait loci affecting economically important traits in a US Holstein population. J. Dairy Sci. 84: 2535-2542. http://dx.doi.org/10.3168/jds.S0022-0302(01)74705-4   Barendse W, Armitage SM, Kossarek LM, Shalom AB et al. (1994). A preliminary map of the bovine genome. Nat. Genet. 6: 227-235. http://dx.doi.org/10.1038/ng0394-227 PMid:8012383   Bishop MD, Kappes SM, Keele JW, Stone RT, et al. (1994). A genetic linkage map for cattle. Genetics 136: 619-639. PMid:7908653 PMCid:1205813   Cant JP, Trout DR, Qiao F and Purdie NG (2002). Milk synthetic response of the bovine mammary gland to an increase in the local concentration of arterial glucose. J. Dairy Sci. 85: 494-503. http://dx.doi.org/10.3168/jds.S0022-0302(02)74100-3   Chen HY, Zhang Q, Yin CC, Wang CK, et al. (2006). Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by daughter design. J. Dairy Sci. 89: 782-790. http://dx.doi.org/10.3168/jds.S0022-0302(06)72140-3   Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971. PMid:7851788 PMCid:1206241   Darvasi A, Weinreb A, Minke V, Weller JI, et al. (1993). Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943-951. PMid:8349116 PMCid:1205528   Georges M, Nielsen D, Mackinnon M, Mishra A, et al. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139: 907-920. PMid:7713441 PMCid:1206390   Green P, Falls K and Crooks S (1990). CRI-MAP Documentation, Version 2.4. Available at [http://linkage.rockefeller.edu./soft/crimap/]. Accessed .......... Haley CS and Knott SA (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.   Heyen DW, Weller JI, Ron M, Band M, et al. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics 1: 165-175. PMid:11015574   Ihara N, Takasuga A, Mizoshita K, Takeda H, et al. (2004). A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14: 1987-1998. http://dx.doi.org/10.1101/gr.2741704 PMid:15466297 PMCid:524423   Khatkar MS, Thomson PC, Tammen I and Raadsma HW (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36: 163-190. http://dx.doi.org/10.1186/1297-9686-36-2-163 PMid:15040897 PMCid:2697184   Knott SA, Elsen JM and Haley CS (1996). Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71-80. http://dx.doi.org/10.1007/BF00225729   Lipkin E, Mosig MO, Darvasi A, Ezra E, et al. (1998). Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage. Genetics 149: 1557-1567. PMid:9649542 PMCid:1460242   Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105   Martinez ML, Verneque RS, Teodoro RL, Silva MV et al. (2005). Programa Nacional de Melhoramento do Gir Leiteiro. Resultados do Teste de Progênie - 13º Grupo. Embrapa Gado de Leite, Juiz de Fora.   Mosig MO, Lipkin E, Khutoreskaya G, Tchourzyna E, et al. (2001). A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics 157: 1683-1698. PMid:11290723 PMCid:1461602   Neville MC, Allen JC and Watters C (1983). The Mechanisms of Milk Secretion. In: Lactation: Physiology, Nutrition, and Breast-Feeding (Neville MC and Neifert MR, eds.). Plenum, New York, 49-99.   Olsen HG, Gomez-Raya L, Vage DI, Olsaker I, et al. (2002). A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J. Dairy Sci. 85: 3124-3130. http://dx.doi.org/10.3168/jds.S0022-0302(02)74400-7   Ron M, Blanc Y, Band M, Ezra E, et al. (1996). Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement. J. Dairy Sci. 79: 676-681. http://dx.doi.org/10.3168/jds.S0022-0302(96)76413-5   Ron M, Kliger D, Feldmesser E, Seroussi E, et al. (2001). Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics 159: 727-735. PMid:11606547 PMCid:1461848   Sambrook J and Rusell DW (2001). Molecular Cloning: A laboratory Manual. 3th edn. CSH Press.   Santiago AA (1985). O Zebu na Índia, no Brasil e no Mundo. Instituto Campineiro de Ensino Agrícola, Campinas.   Seaton G, Hernández-Sánchez J, Grunchec JA, White I, et al (2006). A Grid Portal for QTL Mapping of Compute Intensive Datasets. In: Proceedings of 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 136-143.   Shahbazkia HR, Aminlari M, Tavasoli A, Mohamadnia AR, et al. (2010). Associations among milk production traits and glycosylated haemoglobin in dairy cattle; importance of lactose synthesis potential. Vet. Res. Commun. 34: 1-9. http://dx.doi.org/10.1007/s11259-009-9324-2 PMid:19851880   Verneque RS, Panetto JCC, Bruneli FAT and Geraldo CC (2011). Programa Nacional de Melhoramento de Gir Leiteiro - Sumario Brasileiro de Touros - Resultado do Teste de Progênie. Embrapa Gado de Leite, Juiz de Fora.   Viitala SM, Schulman NF, de Koning DJ, Elo K, et al. (2003). Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J. Dairy Sci. 86: 1828-1836. http://dx.doi.org/10.3168/jds.S0022-0302(03)73769-2   Weller JI, Kashi Y and Soller M (1990). Power of "daughter and granddaughter" designs for genetic mapping of quantitative traits in dairy cattle using genetic markers. J. Dairy Sci. 73: 2525-2532. http://dx.doi.org/10.3168/jds.S0022-0302(90)78938-2   Welper RD and Freeman AE (1992). Genetic parameters for yield traits of Holsteins, including lactose and somatic cell score. J. Dairy Sci. 75: 1342-1348. http://dx.doi.org/10.3168/jds.S0022-0302(92)77885-0   Zhang Q, Boichard D, Hoeschele I, Ernst C, et al. (1998). Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149: 1959-1973. PMid:9691050 PMCid:1460288   Zhao FQ and Keating AF (2007). Invited review: Expression and regulation of glucose transporters in bovine mammary gland. J. Dairy Sci. 90: E76-E86. http://dx.doi.org/10.3168/jds.2006-470 PMid:17517754
2010
L. L. Santos, Fonseca, C. G., Starling, A. L. P., Januário, J. N., Aguiar, M. J. B., Peixoto, M. G. C. D., and Carvalho, M. R. S., Variations in genotype-phenotype correlations in phenylketonuria patients, vol. 9, pp. 1-8, 2010.
Anonymous (2003). PAHdb. Phenylalanine Hydroxylase Locus Knowledgebase. Available at [http://www.pahdb.mcgill.ca/]. Accessed August 4, 2009.   Acosta A, Silva W Jr, Carvalho T, Gomes M, et al. (2001). Mutations of the phenylalanine hydroxylase (PAH) gene in Brazilian patients with phenylketonuria. Hum. Mutat. 17: 122-130. http://dx.doi.org/10.1002/1098-1004(200102)17:2<122::AID-HUMU4>3.0.CO;2-C   Aulehla-Scholz C and Heilbronner H (2003). Mutational spectrum in German patients with phenylalanine hydroxylase deficiency. Hum. Mutat. 21: 399-400. http://dx.doi.org/10.1002/humu.9116 PMid:12655553   Benit P, Rey F, Blandin-Savoja F, Munnich A, et al. (1999). The mutant genotype is the main determinant of the metabolic phenotype in phenylalanine hydroxylase deficiency. Mol. Genet. Metab. 68: 43-47. http://dx.doi.org/10.1006/mgme.1999.2886 PMid:10479481   Bercovich D, Elimelech A, Zlotogora J, Korem S, et al. (2008). Genotype-phenotype correlations analysis of mutations in the phenylalanine hydroxylase (PAH) gene. J. Hum. Genet. 53: 407-418. http://dx.doi.org/10.1007/s10038-008-0264-4 PMid:18299955   Clague A and Thomas A (2002). Neonatal biochemical screening for disease. Clin. Chim. Acta 315: 99-110. http://dx.doi.org/10.1016/S0009-8981(01)00716-1   Daniele A, Scala I, Cardillo G, Pennino C, et al. (2009). Functional and structural characterization of novel mutations and genotype-phenotype correlation in 51 phenylalanine hydroxylase deficient families from Southern Italy. FEBS J. 276: 2048-2059. http://dx.doi.org/10.1111/j.1742-4658.2009.06940.x PMid:19292873   Dipple KM and McCabe ER (2000). Phenotypes of patients with "simple" Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66: 1729-1735. http://dx.doi.org/10.1086/302938 PMid:10793008 PMCid:1378056   Dipple KM, Phelan JK and McCabe ER (2001). Consequences of complexity within biological networks: robustness and health, or vulnerability and disease. Mol. Genet. Metab. 74: 45-50. http://dx.doi.org/10.1006/mgme.2001.3227 PMid:11592802   Erlandsen H and Stevens RC (1999). The structural basis of phenylketonuria. Mol. Genet. Metab. 68: 103-125. http://dx.doi.org/10.1006/mgme.1999.2922 PMid:10527663   Erlandsen H, Patch MG, Gamez A, Straub M, et al. (2003). Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria. Pediatrics 112: 1557-1565. PMid:14654665   Guldberg P, Rey F, Zschocke J, Romano V, et al. (1998). A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am. J. Hum. Genet. 63: 71-79. http://dx.doi.org/10.1086/301920 PMid:9634518 PMCid:1377241   Guttler F (1980). Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr. Scand. Suppl 280: 1-80. PMid:7006308   Guttler F, Azen C, Guldberg P, Romstad A, et al. (1999). Relationship among genotype, biochemical phenotype, and cognitive performance in females with phenylalanine hydroxylase deficiency: report from the Maternal Phenylketonuria Collaborative Study. Pediatrics 104: 258-262. http://dx.doi.org/10.1542/peds.104.2.258 PMid:10429004   Jennings IG, Cotton RG and Kobe B (2000). Structural interpretation of mutations in phenylalanine hydroxylase protein aids in identifying genotype-phenotype correlations in phenylketonuria. Eur. J. Hum. Genet. 8: 683-696. http://dx.doi.org/10.1038/sj.ejhg.5200518 PMid:10980574   Kasnauskiene J, Cimbalistiene L and Kucinskas V (2003). Validation of PAH genotype-based predictions of metabolic phenylalanine hydroxylase deficiency phenotype: investigation of PKU/MHP patients from Lithuania. Med. Sci. Monit. 9: CR142-CR146. PMid:12640344   Kayaalp E, Treacy E, Waters PJ, Byck S, et al. (1997). Human phenylalanine hydroxylase mutations and hyperphenylal-aninemia phenotypes: a metanalysis of genotype-phenotype correlations. Am. J. Hum. Genet. 61: 1309-1317. http://dx.doi.org/10.1086/301638 PMid:9399896 PMCid:1716084   Kim SW, Jung J, Oh HJ, Kim J, et al. (2006). Structural and functional analyses of mutations of the human phenylalanine hydroxylase gene. Clin. Chim. Acta 365: 279-287. http://dx.doi.org/10.1016/j.cca.2005.09.019 PMid:16253218   Leandro J, Nascimento C, de Almeida IT and Leandro P (2006). Co-expression of different subunits of human phenyl-alanine hydroxylase: evidence of negative interallelic complementation. Biochim. Biophys. Acta 1762: 544-550. http://dx.doi.org/10.1016/j.bbadis.2006.02.001 PMid:16545551   Mallolas J, Mila M, Lambruschini N, Cambra FJ, et al. (1999). Biochemical phenotype and its relationship with genotype in hyperphenylalaninemia heterozygotes. Mol. Genet. Metab. 67: 156-161. http://dx.doi.org/10.1006/mgme.1999.2862 PMid:10356315   O'Flynn ME, Holtzman NA, Blaskovics M, Azen C, et al. (1980). The diagnosis of phenylketonuria: a report from the Collaborative Study of Children Treated for Phenylketonuria. Am. J. Dis. Child 134: 769-774. PMid:7405915   Pey AL, Desviat LR, Gamez A, Ugarte M, et al. (2003). Phenylketonuria: genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH. Hum. Mutat. 21: 370-378. http://dx.doi.org/10.1002/humu.10198 PMid:12655546   Rivera I, Cabral A, Almeida M, Leandro P, et al. (2000). The correlation of genotype and phenotype in Portuguese hyperphenylalaninemic patients. Mol. Genet. Metab. 69: 195-203. http://dx.doi.org/10.1006/mgme.2000.2971 PMid:10767174   Santos LL, Magalhaes MC, Reis AO, Starling AL, et al. (2006). Frequencies of phenylalanine hydroxylase mutations I65T, R252W, R261Q, R261X, IVS10nt11, V388M, R408W, Y414C, and IVS12nt1 in Minas Gerais, Brazil. Genet. Mol. Res. 5: 16-23. PMid:16755493   Santos LL, Castro-Magalhaes M, Fonseca CG, Starling AL, et al. (2008). PKU in Minas Gerais State, Brazil: mutation analysis. Ann. Hum. Genet. 72: 774-779. http://dx.doi.org/10.1111/j.1469-1809.2008.00476.x PMid:18798839   SAS Institute (2003). SAS/STAT® Software: Changes and Enhacements through Release 9.1. SAS Institute, Cary.   Scriver CR (2002). Why mutation analysis does not always predict clinical consequences: explanations in the era of genomics. J. Pediatr. 140: 502-506. http://dx.doi.org/10.1067/mpd.2002.124316 PMid:12032513   Scriver CR (2007). The PAH gene, phenylketonuria, and a paradigm shift. Hum. Mutat. 28: 831-845. http://dx.doi.org/10.1002/humu.20526 PMid:17443661   Scriver CR and Waters PJ (1999). Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 15: 267-272. http://dx.doi.org/10.1016/S0168-9525(99)01761-8   Scriver CR and Kaufman S (2001). The Hyperphenylalaninemias. In: The Metabolic and Molecular Bases of Inherited Disease (Scriver CR, Beaudet AL, Sly WS and Valle D, eds.). McGraw-Hill, New York, 1667-1724.   Waters PJ (2003). How PAH gene mutations cause hyper-phenylalaninemia and why mechanism matters: insights from in vitro expression. Hum. Mutat. 21: 357-369. http://dx.doi.org/10.1002/humu.10197 PMid:12655545   Waters PJ, Parniak MA, Nowacki P and Scriver CR (1998). In vitro expression analysis of mutations in phenylalanine hydroxylase: linking genotype to phenotype and structure to function. Hum. Mutat. 11: 4-17. http://dx.doi.org/10.1002/(SICI)1098-1004(1998)11:1<4::AID-HUMU2>3.0.CO;2-L   Zschocke J (2003). Phenylketonuria mutations in Europe. Hum. Mutat. 21: 345-356. http://dx.doi.org/10.1002/humu.10192 PMid:12655544