Publications

Found 14 results
Filters: Author is R.S. Verneque  [Clear All Filters]
2013
R. J. Pereira, Ayres, D. R., L. Faro, E., Verneque, R. S., Filho, A. E. Vercesi, and Albuquerque, L. G., Comparison of factor-analytic and reduced rank models for test-day milk yield in Gyr dairy cattle (Bos indicus), vol. 12, pp. 4036-4045, 2013.
D. J. A. Santos, Peixoto, M. G. C. D., Borquis, R. R. Aspilcueta, Verneque, R. S., Panetto, J. C. C., and Tonhati, H., Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (Bos indicus) cows, vol. 12, pp. 143-153, 2013.
Ali TE and Schaeffer LR (1987). Accounting for covariances among test day milk yields in dairy cows. Can. J. Anim. Sci. 67: 637-644. http://dx.doi.org/10.4141/cjas87-067   Araújo CV, Torres RA, Costa CN, Torres Filho RA, et al. (2006). Uso de modelos de regressão aleatória para descrever a variação genética da produção de leite na raça Holandesa. Rev. Bras. Zootec. 35: 975-981. http://dx.doi.org/10.1590/S1516-35982006000400006   Bignardi AB, El Faro L, Cardoso VL, Machado PF, et al. (2009). Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livest. Prod. Sci. 123: 1-7. http://dx.doi.org/10.1016/j.livsci.2008.09.021   Brotherstone S, White IMS and Meyer K (2000). Genetic modeling of daily yield using orthogonal polynomials and parametric curves. Anim. Sci. 70: 407-415.   Cobuci JA, Euclydes RF, Verneque RS, Teodoro RL, et al. (2000). Curva de lactação na raça Guzerá. Rev. Bras. Zootec. 29: 1332-1339. http://dx.doi.org/10.1590/S1516-35982000000500011   Cobuci JA, Euclydes RF, Lopes PS, Costa CN, et al. (2005). Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model. Genet. Mol. Biol. 28: 75-83. http://dx.doi.org/10.1590/S1415-47572005000100013   Costa CN, Melo CMR, Machado CHC, Freitas AF, et al. (2005). Parâmetros genéticos para a produção de leite de controles individuais de vacas da raça Gir Leiteiro estimados com modelos de repetibilidade e regressão aleatória. Rev. Bras. Zootec. 34: 1519-1530. http://dx.doi.org/10.1590/S1516-35982005000500012   de Melo CM, Packer IU, Costa CN and Machado PF (2007). Genetic parameters for test day milk yields of first lactation Holstein cows by random regression models. Animal 1: 325-334. http://dx.doi.org/10.1017/S1751731107685036 PMid:22444330   El Faro L and Albuquerque LG (2003). Utilização de modelos de regressão aleatória para produção de leite no dia do controle, com diferentes estruturas de variâncias residuais. Rev. Bras. Zootec. 32: 1104-1113. http://dx.doi.org/10.1590/S1516-35982003000500010   Freitas LS, Silva MA, Verneque RS, Valente BD, et al. (2010). Avaliação da persistência na lactação da raça Guzerá, utilizando modelos de regressão aleatória. Arq. Bras. Med. Vet. Zootec. 62: 401-408. http://dx.doi.org/10.1590/S0102-09352010000200021   Freitas MS (2003). Utilização de Modelos de Regressão Aleatória na Avaliação Genética de Animais da Raça Girolando. Master's tesis, Universidade Federal de Viçosa, Viçosa.   Herrera LGG, El Faro L, Albuquerque LG and Tonhati H et al. (2008). Estimativas de parâmetros genéticos para produção de leite e persistência da lactação em vacas Gir, aplicando modelos de regressão aleatória. Rev. Bras. Zootec. 37: 1584-1594. http://dx.doi.org/10.1590/S1516-35982008000900009   Jakobsen JH, Madsen P, Jensen J, Pedersen J, et al. (2002). Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. J. Dairy Sci. 85: 1607-1616. http://dx.doi.org/10.3168/jds.S0022-0302(02)74231-8   Jamrozik J and Schaeffer LR (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 80: 762-770. http://dx.doi.org/10.3168/jds.S0022-0302(97)75996-4   Kettunen A, Mäntysaari EA and Pösö J (2000). Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci. 66: 251-261. http://dx.doi.org/10.1016/S0301-6226(00)00166-4   Kirkpatrick M, Lofsvold D and Bulmer M (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics 124: 979-993. PMid:2323560 PMCid:1203988   Lidauer M and Mäntysaari EA (1999). Multiple trait reduced rank random regression test-day model for production traits. Interbull Bull. 22: 74-80.   López-Romero P and Caraba-o MJ (2003). Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livest. Prod. Sci. 82: 81-96. http://dx.doi.org/10.1016/S0301-6226(03)00003-4   Meyer K (1999). Estimates of genetic and phenotypic covariance functions for postweaning growth and mature weight of beef cows. J. Anim. Breed. Genet. 116: 181-205. http://dx.doi.org/10.1046/j.1439-0388.1999.00193.x   Meyer K (2006). WOMBAT - A Program for Mixed Model Analyses by Restricted Maximum Likelihood. User Notes. Animal Genetics and Breeding Unit, Amidale.   Meyer K and Hill WG (1997). Estimation of genetic and phenotypic covariance functions for longitudinal or "repeated" records by restricted maximum likelihood. Livest. Prod. Sci. 47: 185-200. http://dx.doi.org/10.1016/S0301-6226(96)01414-5   Pereira RJ, Lopes OS, Verneque RS, Santana Júnior ML, et al. (2010). Funções de covariância para produção de leite no dia do controle em bovinos Gir leiteiro. Pesq. Agropec. Bras. 45: 1303-1311. http://dx.doi.org/10.1590/S0100-204X2010001100011   Schawarz G (1978). Estimating the dimension of a model. Ann. Statist. 6: 461-464. http://dx.doi.org/10.1214/aos/1176344136   Takma C and Akabas Y (2009). Heterogeneity of residual variances of test day milk yields estimated by random regression model in Turkish Holsteins. J. Anim. Vet. Adv. 8: 782-787.   Wilmink JBM (1987). Adjustment of test-day milk, fat and protein yields for age, season and stage of lactation. Livest. Prod. Sci. 16: 335-348. http://dx.doi.org/10.1016/0301-6226(87)90003-0   Wolfinger R (1993). Covariance structure selection in general mixed models. Commun. Stat. 22: 1079-1106. http://dx.doi.org/10.1080/03610919308813143
P. A. S. Fonseca, Rosse, I. C., DeMiranda, M., Machado, M. A., Verneque, R. S., Peixoto, M. G. C. D., and Carvalho, M. R. S., A new tetra-primer ARMS-PCR for genotyping bovine kappa-casein polymorphisms, vol. 12, pp. 6521-6526, 2013.
2012
R. J. Pereira, Verneque, R. S., Lopes, P. S., Santana, Jr., M. L., Lagrotta, M. R., Torres, R. A., Filho, A. E. Vercesi, and Machado, M. A., Milk yield persistency in Brazilian Gyr cattle based on a random regression model, vol. 11, pp. 1599-1609, 2012.
Cobuci JA, Euclydes RF, Costa CN, Lopes PS, et al. (2004). Análises da persistência na lactação de vacas da raça holandesa, usando produção no dia do controle e modelo de regressão aleatória. Rev. Bras. Zootec. 33: 546-554. http://dx.doi.org/10.1590/S1516-35982004000300004   Cobuci JA, Costa CN, Teixeira NM and Freitas AF (2006). Utilização dos polinômios de Legendre e da função de Wilmink em avaliações genéticas para persistência na lactação de animais da raça Holandesa. Arq. Bras. Med. Vet. Zootec. 58: 614-623. http://dx.doi.org/10.1590/S0102-09352006000400025   De Roos APW, Harbers AGF and de Jong G (2001). Random regression test-day model in The Netherlands. Interbull Bull. 27: 155-158.   Dekkers JCM, Ten Hag JH and Weersink A (1998). Economic aspects of persistency of lactation in dairy cattle. Livest. Prod. Sci. 53: 237-252. http://dx.doi.org/10.1016/S0301-6226(97)00124-3   Jakobsen JH, Madsen P, Jensen J, Pedersen J, et al. (2002). Genetic parameters for milk production and persistency for Danish Holstein estimated in random regression models using REML. J. Dairy Sci. 85: 1607-1616. http://dx.doi.org/10.3168/jds.S0022-0302(02)74231-8   Jakobsen JH, Rekaya R, Jensen J, Sorensen DA, et al. (2003). Bayesian estimates of covariance components between lactation curve parameters and disease liability in Danish Holstein cows. J. Dairy Sci. 86: 3000-3007. http://dx.doi.org/10.3168/jds.S0022-0302(03)73898-3   Jamrozik J, Schaeffer LR and Dekkers JCM (1997). Genetic evaluation of dairy cattle using test day yields and random regression model. J. Dairy Sci. 80: 1217-1226. http://dx.doi.org/10.3168/jds.S0022-0302(97)76050-8   Kistemaker GJ (2003). Comparison of persistency definitions in random regression test day models. Interbull Bull. 30: 96-98.   Madsen O (1975). A comparison of some suggested measures of persistency of milk yield in dairy cows. Anim. Prod. 20: 191-197. http://dx.doi.org/10.1017/S0003356100035182   Meyer K (2007). WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. 8: 815-821. http://dx.doi.org/10.1631/jzus.2007.B0815 PMid:17973343 PMCid:2064953   Pereira RJ, Santana ML Jr, Bignardi AB, Verneque RS, et al. (2011). Effect of pregnancy on the genetic evaluation of dairy cattle. Genet. Mol. Res. 10: 2190-2201. http://dx.doi.org/10.4238/vol10-3gmr1151 PMid:21968726   Santos FAP, Martinez JC, Greco LF, Carareto R, et al (2007). Suplementação de Vacas sob Pastejo: Considerações Técnicas e Econômicas Visando Maior Rentabilidade. Proceedings of the 8th Simpósio Internacional de Produção Intensiva de Leite. INTERLEITE, Uberlândia, 249-300.   Sölkner J and Fuchs W (1987). A comparison of different measures of persistency with special respect to variation of Test-day milk yields. Livest. Prod. Sci. 16: 305-319. http://dx.doi.org/10.1016/0301-6226(87)90001-7   Togashi K and Lin CY (2006). Selection for milk production and persistency using eigenvectors of the random regression coefficient matrix. J. Dairy Sci. 89: 4866-4873. http://dx.doi.org/10.3168/jds.S0022-0302(06)72535-8   Togashi K and Lin CY (2007). Improvement of lactation milk and persistency using the eigenvectors of the genetic covariance matrix between lactation stages. Livest. Sci. 110: 64-72. http://dx.doi.org/10.1016/j.livsci.2006.10.003
2011
R. J. Pereira, Santana, Jr., M. L., Bignardi, A. B., Verneque, R. S., L. Faro, E., and Albuquerque, L. G., Effect of pregnancy on the genetic evaluation of dairy cattle, vol. 10, pp. 2190-2201, 2011.
Akers RM (2006). Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. J. Dairy Sci. 89: 1222-1234. http://dx.doi.org/10.3168/jds.S0022-0302(06)72191-9 Bachman KC, Hayen MJ, Morse D and Wilcox CJ (1988). Effect of pregnancy, milk yield, and somatic cell count on bovine milk fat hydrolysis. J. Dairy Sci. 71: 925-931. http://dx.doi.org/10.3168/jds.S0022-0302(88)79638-1 Bohmanova J, Miglior F and Jamrozik J (2008). Estimates of the effect of pregnancy on production traits of Canadian dairy breeds. Available at [http://cgil.uoguelph.ca/dcbgc/Agenda0809/Pregnancy.pdf]. Accessed January 25, 2010. Bohmanova J, Jamrozik J and Miglior F (2009). Effect of pregnancy on production traits of Canadian Holstein cows. J. Dairy Sci. 92: 2947-2959. http://dx.doi.org/10.3168/jds.2008-1782 PMid:19448027 Brotherstone S, Thompson R and White IMS (2004). Effects of pregnancy on daily milk yield of Holstein-Friesian dairy cattle. Livest. Prod. Sci. 87: 265-269. http://dx.doi.org/10.1016/j.livprodsci.2003.07.014 Erb RE, Goodwin MM, Morrison RA and Shaw AO (1952). Lactation studies: 1. Effect of gestation. J. Dairy Sci. 35: 224-233. http://dx.doi.org/10.3168/jds.S0022-0302(52)93695-3 Haile-Mariam M, Bowman PJ and Goddard ME (2003). Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livest. Prod. Sci. 80: 189-200. http://dx.doi.org/10.1016/S0301-6226(02)00188-4 Interbull (2010). National GES information. Available at [http://www-interbull.slu.se/national_ges_info2/framesida-ges.htm]. Accessed May 25, 2010. Loker S, Miglior F, Bohmanova J, Jamrozik J, et al. (2009a). Phenotypic analysis of pregnancy effect on milk, fat, and protein yields of Canadian Ayrshire, Jersey, Brown Swiss, and Guernsey breeds. J. Dairy Sci. 92: 1300-1312. http://dx.doi.org/10.3168/jds.2008-1425 PMid:19233823 Loker S, Miglior F, Bohmanova J, Schaeffer LR, et al. (2009b). Short communication: effect of preadjusting test-day yields for stage of pregnancy on variance component estimation in Canadian Ayrshires. J. Dairy Sci. 92: 2270-2275. http://dx.doi.org/10.3168/jds.2008-1806 PMid:19389986 Meyer K (2007). WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B 8: 815-21. http://dx.doi.org/10.1631/jzus.2007.B0815 PMid:17973343    PMCid:2064953 Olori VE, Brotherstone S, Hill WG and McGuirk BJ (1997). Effect of gestation stage on milk yield and composition in Holstein Friesian dairy cattle. Livest. Prod. Sci. 52: 167-176. http://dx.doi.org/10.1016/S0301-6226(97)00126-7 Roche JR (2003). Effect of pregnancy on milk production and bodyweight from identical twin study. J. Dairy Sci. 86: 777-783. http://dx.doi.org/10.3168/jds.S0022-0302(03)73659-5
C. S. Nascimento, Machado, M. A., Guimarães, S. E. F., Martins, M. F., Peixoto, J. O., Furlong, J., Prata, M. C. A., Verneque, R. S., Teodoro, R. L., and Lopes, P. S., Expressed sequenced tags profiling of resistant and susceptible Gyr x Holstein cattle infested with the tick Rhipicephalus (Boophilus) microplus, vol. 10, pp. 3803-3816, 2011.
Adachi W, Kawamoto S, Ohno I, Nishida K, et al. (1998). Isolation and characterization of human cathepsin V: a major proteinase in corneal epithelium. Invest. Ophthalmol. Vis. Sci. 39: 1789-1796. PMid:9727401 Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917 Band MR, Larson JH, Rebeiz M, Green CA, et al. (2000). An ordered comparative map of the cattle and human genomes. Genome Res. 10: 1359-1368. http://dx.doi.org/10.1101/gr.145900 PMid:10984454 PMCid:310912 Birnboim HC and Doly J (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523. http://dx.doi.org/10.1093/nar/7.6.1513 PMid:388356 PMCid:342324 Boldman KG, Kriese LA and Van Vleck LD (1995). A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances. Department of Agriculture/Agricultural Research Service U.S. USDA-ARS, Lincoln. Causton HC, Ren B, Koh SS, Harbison CT, et al. (2001). Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12: 323-337. PMid:11179418 PMCid:30946 Colige A, Ruggiero F, Vandenberghe I, Dubail J, et al. (2005). Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J. Biol. Chem. 280: 34397-34408. http://dx.doi.org/10.1074/jbc.M506458200 PMid:16046392 Conesa A, Gotz S, Garcia-Gomez JM, Terol J, et al. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. http://dx.doi.org/10.1093/bioinformatics/bti610 PMid:16081474 Dean MD, Clark NL, Findlay GD, Karn RC, et al. (2009). Proteomics and comparative genomic investigations reveal heterogeneity in evolutionary rate of male reproductive proteins in mice (Mus domesticus). Mol. Biol. Evol. 26: 1733-1743. http://dx.doi.org/10.1093/molbev/msp094 PMid:19420050 PMCid:2734151 Doudna JA and Rath VL (2002). Structure and function of the eukaryotic ribosome: the next frontier. Cell 109: 153-156. http://dx.doi.org/10.1016/S0092-8674(02)00725-0 Douglas SE, Gallant JW, Bullerwell CE, Wolff C, et al. (1999). Winter flounder expressed sequence tags: Establishment of an EST database and identification of novel fish genes. Mar. Biotechnol. 1: 458-0464. http://dx.doi.org/10.1007/PL00011802 Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921 Gill JL, Ericsson GF and Helland IS (1986). Precision of assessing anthelmintic efficacy. Biometrics 42: 981-987. http://dx.doi.org/10.2307/2530714 PMid:3814739 Gumbiner BM (1993). Breaking through the tight junction barrier. J. Cell Biol. 123: 1631-1633. http://dx.doi.org/10.1083/jcb.123.6.1631 PMid:8276885 Hale LP, Patel DD, Clark RE and Haynes BF (1995). Distribution of CD44 variant isoforms in human skin: differential expression in components of benign and malignant epithelia. J. Cutan. Pathol. 22: 536-545. http://dx.doi.org/10.1111/j.1600-0560.1995.tb01148.x PMid:8835172 Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812 Itoh T, Watanabe T, Ihara N, Mariani P, et al. (2005). A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 85: 413-424. http://dx.doi.org/10.1016/j.ygeno.2004.12.007 PMid:15780744 Machado MA, Azevedo AL, Teodoro RL, Pires MA, et al. (2010). Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus x Bos indicus). BMC Genom. 11: 280. http://dx.doi.org/10.1186/1471-2164-11-280 PMid:20433753 PMCid:2880304 Martinez ML, Machado MA, Nascimento CS, Silva MV, et al. (2006). Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genet. Mol. Res. 5: 513-524. PMid:17117367 Metzelaar MJ, Wijngaard PL, Peters PJ, Sixma JJ, et al. (1991). CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J. Biol. Chem. 266: 3239-3245. PMid:1993697 Sambrook J and Russel DW (2001). Molecular Cloning. A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor. Smothers CD, Sun F and Dayton AD (1999). Comparison of arithmetic and geometric means as measures of a central tendency in cattle nematode populations. Vet. Parasitol. 81: 211-224. http://dx.doi.org/10.1016/S0304-4017(98)00206-4 Villares JB (1941). Climatologia Zootecnica III: Contribuição ao Estudo de Resistência e Susceptibilidade Genética dos Bovinos ao Boophilus microplus. In: Boletim da Indústria Animal: 8-9 July 1941, Edited by Nova Serie, São Paulo. Wang YH, Reverter A, Kemp D and McWilliam SM (2007). Gene expression profiling of Hereford Shorthorn cattle following challenge with Boophilus microplus tick larvae. Aust. J. Exp. Agr. 47: 1397-1407. http://dx.doi.org/10.1071/EA07012 Westfall PH and Young SS (1993). Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment. John Wiley & Sons, Inc., New York. Wharton RH and Utech KBW (1970). The relation between engorgement and dropping of Boophilus microplus (Canestrini) (Ixodidae) to the assessment of tick numbers on cattle. 171. Wilkinson PR (1962). Selection of cattle for tick resistance, and the effect of herds of different susceptibility on Boophilus populations. Aust. J. Agr. Res. 13: 974-983. http://dx.doi.org/10.1071/AR9620974 Willadsen P and Jongejan F (1999). Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol. Today 15: 258-262. http://dx.doi.org/10.1016/S0169-4758(99)01472-6 Wind AE, Larkin DM, Green CA and Elliott JS (2005). A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution. Proc. Nat. Acad. Sci. U. S. A. 102: 18526-18531. http://dx.doi.org/10.1073/pnas.0509285102 PMid:16339895 PMCid:1317968 Wool IG (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165. PMid:8871397
A. A. Silva, Azevedo, A. L. S., Gasparini, K., Verneque, R. S., Peixoto, M. G. C. D., Panetto, B. R., Guimarães, S. E. F., and Machado, M. A., Quantitative trait loci affecting lactose and total solids on chromosome 6 in Brazilian Gir dairy cattle, vol. 10, pp. 3817-3827, 2011.
Arnold JW, Bertrand JK and Benyshek LL (1992). Animal model for genetic evaluation of multibreed data. J. Anim. Sci. 70: 3322-3332. PMid:1459893   Ashwell MS, Van Tassell CP and Sonstegard TS (2001). A genome scan to identify quantitative trait loci affecting economically important traits in a US Holstein population. J. Dairy Sci. 84: 2535-2542. http://dx.doi.org/10.3168/jds.S0022-0302(01)74705-4   Barendse W, Armitage SM, Kossarek LM, Shalom AB et al. (1994). A preliminary map of the bovine genome. Nat. Genet. 6: 227-235. http://dx.doi.org/10.1038/ng0394-227 PMid:8012383   Bishop MD, Kappes SM, Keele JW, Stone RT, et al. (1994). A genetic linkage map for cattle. Genetics 136: 619-639. PMid:7908653 PMCid:1205813   Cant JP, Trout DR, Qiao F and Purdie NG (2002). Milk synthetic response of the bovine mammary gland to an increase in the local concentration of arterial glucose. J. Dairy Sci. 85: 494-503. http://dx.doi.org/10.3168/jds.S0022-0302(02)74100-3   Chen HY, Zhang Q, Yin CC, Wang CK, et al. (2006). Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by daughter design. J. Dairy Sci. 89: 782-790. http://dx.doi.org/10.3168/jds.S0022-0302(06)72140-3   Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971. PMid:7851788 PMCid:1206241   Darvasi A, Weinreb A, Minke V, Weller JI, et al. (1993). Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943-951. PMid:8349116 PMCid:1205528   Georges M, Nielsen D, Mackinnon M, Mishra A, et al. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139: 907-920. PMid:7713441 PMCid:1206390   Green P, Falls K and Crooks S (1990). CRI-MAP Documentation, Version 2.4. Available at [http://linkage.rockefeller.edu./soft/crimap/]. Accessed .......... Haley CS and Knott SA (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.   Heyen DW, Weller JI, Ron M, Band M, et al. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics 1: 165-175. PMid:11015574   Ihara N, Takasuga A, Mizoshita K, Takeda H, et al. (2004). A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14: 1987-1998. http://dx.doi.org/10.1101/gr.2741704 PMid:15466297 PMCid:524423   Khatkar MS, Thomson PC, Tammen I and Raadsma HW (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36: 163-190. http://dx.doi.org/10.1186/1297-9686-36-2-163 PMid:15040897 PMCid:2697184   Knott SA, Elsen JM and Haley CS (1996). Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71-80. http://dx.doi.org/10.1007/BF00225729   Lipkin E, Mosig MO, Darvasi A, Ezra E, et al. (1998). Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage. Genetics 149: 1557-1567. PMid:9649542 PMCid:1460242   Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105   Martinez ML, Verneque RS, Teodoro RL, Silva MV et al. (2005). Programa Nacional de Melhoramento do Gir Leiteiro. Resultados do Teste de Progênie - 13º Grupo. Embrapa Gado de Leite, Juiz de Fora.   Mosig MO, Lipkin E, Khutoreskaya G, Tchourzyna E, et al. (2001). A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics 157: 1683-1698. PMid:11290723 PMCid:1461602   Neville MC, Allen JC and Watters C (1983). The Mechanisms of Milk Secretion. In: Lactation: Physiology, Nutrition, and Breast-Feeding (Neville MC and Neifert MR, eds.). Plenum, New York, 49-99.   Olsen HG, Gomez-Raya L, Vage DI, Olsaker I, et al. (2002). A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J. Dairy Sci. 85: 3124-3130. http://dx.doi.org/10.3168/jds.S0022-0302(02)74400-7   Ron M, Blanc Y, Band M, Ezra E, et al. (1996). Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement. J. Dairy Sci. 79: 676-681. http://dx.doi.org/10.3168/jds.S0022-0302(96)76413-5   Ron M, Kliger D, Feldmesser E, Seroussi E, et al. (2001). Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics 159: 727-735. PMid:11606547 PMCid:1461848   Sambrook J and Rusell DW (2001). Molecular Cloning: A laboratory Manual. 3th edn. CSH Press.   Santiago AA (1985). O Zebu na Índia, no Brasil e no Mundo. Instituto Campineiro de Ensino Agrícola, Campinas.   Seaton G, Hernández-Sánchez J, Grunchec JA, White I, et al (2006). A Grid Portal for QTL Mapping of Compute Intensive Datasets. In: Proceedings of 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 136-143.   Shahbazkia HR, Aminlari M, Tavasoli A, Mohamadnia AR, et al. (2010). Associations among milk production traits and glycosylated haemoglobin in dairy cattle; importance of lactose synthesis potential. Vet. Res. Commun. 34: 1-9. http://dx.doi.org/10.1007/s11259-009-9324-2 PMid:19851880   Verneque RS, Panetto JCC, Bruneli FAT and Geraldo CC (2011). Programa Nacional de Melhoramento de Gir Leiteiro - Sumario Brasileiro de Touros - Resultado do Teste de Progênie. Embrapa Gado de Leite, Juiz de Fora.   Viitala SM, Schulman NF, de Koning DJ, Elo K, et al. (2003). Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J. Dairy Sci. 86: 1828-1836. http://dx.doi.org/10.3168/jds.S0022-0302(03)73769-2   Weller JI, Kashi Y and Soller M (1990). Power of "daughter and granddaughter" designs for genetic mapping of quantitative traits in dairy cattle using genetic markers. J. Dairy Sci. 73: 2525-2532. http://dx.doi.org/10.3168/jds.S0022-0302(90)78938-2   Welper RD and Freeman AE (1992). Genetic parameters for yield traits of Holsteins, including lactose and somatic cell score. J. Dairy Sci. 75: 1342-1348. http://dx.doi.org/10.3168/jds.S0022-0302(92)77885-0   Zhang Q, Boichard D, Hoeschele I, Ernst C, et al. (1998). Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149: 1959-1973. PMid:9691050 PMCid:1460288   Zhao FQ and Keating AF (2007). Invited review: Expression and regulation of glucose transporters in bovine mammary gland. J. Dairy Sci. 90: E76-E86. http://dx.doi.org/10.3168/jds.2006-470 PMid:17517754
2010
C. S. Nascimento, Machado, M. A., Guimarães, S. E. F., Guimarães, M. F. M., Peixoto, J. O., Furlong, J., Prata, M. C. A., Verneque, R. S., Teodoro, R. L., and Lopes, P. S., Differential expression of genes in resistant versus susceptible Gyr x Holstein cattle challenged with the tick Rhipicephalus (Boophilus) microplus, vol. 9. pp. 1974-1979, 2010.
Bobek LA and Levine MJ (1992). Cystatins-inhibitors of cysteine proteinases. Crit. Rev. Oral Biol. Med. 3: 307-332. PMid:1391414   Heiner I, Eisfeld J and Luckhoff A (2003). Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33: 533-540. http://dx.doi.org/10.1016/S0143-4160(03)00058-7   Jansen BJ, van Ruissen F, de Jongh G, Zeeuwen PL, et al. (2001). Serial analysis of gene expression in differentiated cultures of human epidermal keratinocytes. J. Invest. Dermatol. 116: 12-22. http://dx.doi.org/10.1046/j.1523-1747.2001.00218.x PMid:11168793   Kotsyfakis M, Sá-Nunes A, Francischetti IM, Mather TN, et al. (2006). Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 281: 26298-26307. http://dx.doi.org/10.1074/jbc.M513010200 PMid:16772304   Montell C, Birnbaumer L and Flockerzi V (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598. http://dx.doi.org/10.1016/S0092-8674(02)00670-0   Paesen GC, Adams PL, Nuttall PA and Stuart DL (2000). Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim. Biophys. Acta 1482: 92-101. http://dx.doi.org/10.1016/S0167-4838(00)00168-0   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Teodoro RL, Pires MFA, Furlong J, Prata MCA, et al (2006). Estimativas de Parâmetros Genéticos e Fenotípicos para a Resistência a Carrapatos e Bernes em uma População Experimental F2 Holandês x Gir. In: Anais da 43a. Reunião Anual da Sociedade Brasileira de Zootecnia (SBZ, ed.), João Pessoa. (CD ROM).   Utech KBW, Seifert GW and Wharton RH (1978). Breeding Australian lllawarra Shorthorn cattle for resistance to Boophilus microplus. I. Factors affecting resistance. Aust. J. Agric. Res. 29: 411-422. http://dx.doi.org/10.1071/AR9780411   Villares JB (1941). Climatologia Zootécnica. III. Contribuição ao Estudo de Resistência e Susceptibilidade Genética dos Bovinos ao Boophilus microplus. In: Boletim da Indústria Animal. Nova Série, São Paulo, 4: 60-86.