Publications

Found 19 results
Filters: Author is M.A. Machado  [Clear All Filters]
2016
I. B. Gois, Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., and Machado, M. A., Genome wide selection in Citrus breeding, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the research fellowship of the first author. Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes #2007/08435-5 and #2011/18605-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Process #573848/2008-4). REFERENCES Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, et al (2012). The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol. Breed. 29: 575-587. http://dx.doi.org/10.1007/s11032-011-9574-x Cavalcanti JJV, Resende MDV, Santos FHC, Pinheiro CR, et al (2012). Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro. Rev. Bras. Frutic. 34: 840-846. http://dx.doi.org/10.1590/S0100-29452012000300025 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA, et al (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics 185: 1021-1031. http://dx.doi.org/10.1534/genetics.110.116855 Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, et al (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347-365. http://dx.doi.org/10.1534/genetics.112.147983 Endelman JB, et al (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250-255. http://dx.doi.org/10.3835/plantgenome2011.08.0024 Gmitter Junior FG, Chen C, Machado MA, Souza AA, et al (2012). Citrus genomics. Tree Genet. Genomes 8: 611-626. http://dx.doi.org/10.1007/s11295-012-0499-2 Goddard ME, Hayes BJ, Meuwissen THE, et al (2011). Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x Grattapaglia D, Resende MDV, et al (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 Gussen O, Uzun A, Seday U, Kafa G, et al (2011). QTL analysis and regression model for estimating fruit setting in young Citrus trees based on molecular markers. Sci. Hortic. (Amsterdam) 130: 418-424. http://dx.doi.org/10.1016/j.scienta.2011.07.010 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, et al (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443. http://dx.doi.org/10.3168/jds.2008-1646 Heffner EL, Sorrells ME, Jannink JL, et al (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. http://dx.doi.org/10.2135/cropsci2008.08.0512 Henderson CR (1973). Maximum likelihood estimation of variance components. Unpublished manuscripts, Animal Science Dept., Cornell University. Ito TM, Polido PB, Rampim MC, Kaschuk G, et al (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 13: 7839-7851. http://dx.doi.org/10.4238/2014.September.26.22 Iwata H, Hayashi T, Terakami S, Takada N, et al (2013). Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125-140. http://dx.doi.org/10.1270/jsbbs.63.125 Jaccoud D, Peng K, Feinstein D, Kilian A, et al (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: E25. http://dx.doi.org/10.1093/nar/29.4.e25 Jarrell DC, Roose ML, Traugh SN, Kupper RS, et al (1992). A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49-56. http://dx.doi.org/10.1007/BF00223980 Kemper KE, Goddard ME, et al (2012). Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet. 21 (R1): R45-R51. http://dx.doi.org/10.1093/hmg/dds332 Kumar S, Bink MCAM, Volz RK, Bus VGM, et al (2012). Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 8: 1-14. http://dx.doi.org/10.1007/s11295-011-0425-z Lande R, Thompson R, et al (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. Legarra A, Robert-Granié C, Manfredi E, Elsen JM, et al (2008). Performance of genomic selection in mice. Genetics 180: 611-618. http://dx.doi.org/10.1534/genetics.108.088575 Machado MA, Cristofani-Yaly M, Bastianel M, et al (2011). Breeding, genetic and genomic of citrus for disease resistance. Rev. Bras. Frutic. 33: 158-172. http://dx.doi.org/10.1590/S0100-29452011000500019 Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Misztal I, Legarra A, Aguilar I, et al (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648-4655. http://dx.doi.org/10.3168/jds.2009-2064 Patterson HD, Thompson R, et al (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Resende MDV (2002). Genética Biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação tecnológica. Resende MDV, Duarte JB, et al (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 37: 182-194. Resende MDV, Lopes OS, Silva RL, Pires IE, et al (2008). Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq. Flor. Bra. 56: 63-77. Resende MDV, Resende MFRJrSansaloniCP, Petroli CD, et al (2012). Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x Resende MDV, Silva FF, Resende MFR, Junior. and Azevedo CF (2014). Genome-wide selection. In: Biotechnology and Plant Breeding (Borem A and Fritsche-Neto R, eds.). Elsevier. Resende MFJrMuñozP, Resende MDV, Garrick DJ, et al (2012). Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 Siviero A, Cristofani M, Boava LP, Machado MA, et al (2002). Mapeamento de QTLs associados à produção de frutos e sementes em híbridos de Citrus sunki vs Poncirus trifoliata. Rev. Bras. Frutic. 24: 741-743. http://dx.doi.org/10.1590/S0100-29452002000300045 Siviero A, Cristofani M, Furtado EL, Garcia AAF, et al (2006). Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J. Appl. Genet. 47: 23-28. http://dx.doi.org/10.1007/BF03194595 Talon M and Gmitter Junior FG (2008). Citrus genomics. Intern. J. Plant Genomics: 1-17. Viana AP and Resende MDV (2014). Seleção Genômica Ampla (GWS). In: Genética Quantitativa no Melhoramento de Fruteiras (Viana AP, Resende MDV, eds.). Interciência, Rio de Janeiro. Viana AP, Resende MDV, Riaz S, Walker MA, et al (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. 73: 142-149. http://dx.doi.org/10.1590/0103-9016-2014-0323 Wong CK, Bernardo R, et al (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116: 815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 Zapata-Velenzuela J, Whetten RW, Neale D, Mckeand S, et al (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of Loblolly Pine. Genes Genom. Genet 3: 909-916. Zhao Y, Gowda M, Liu W, Wurschum T, et al (2013). Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breed. 132: 99-106. http://dx.doi.org/10.1111/pbr.12008 Zhong S, Dekkers JCM, Fernando RL, Jannink JL, et al (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182: 355-364. http://dx.doi.org/10.1534/genetics.108.098277
I. B. Gois, Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., and Machado, M. A., Genome wide selection in Citrus breeding, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the research fellowship of the first author. Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes #2007/08435-5 and #2011/18605-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Process #573848/2008-4). REFERENCES Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, et al (2012). The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol. Breed. 29: 575-587. http://dx.doi.org/10.1007/s11032-011-9574-x Cavalcanti JJV, Resende MDV, Santos FHC, Pinheiro CR, et al (2012). Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro. Rev. Bras. Frutic. 34: 840-846. http://dx.doi.org/10.1590/S0100-29452012000300025 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA, et al (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics 185: 1021-1031. http://dx.doi.org/10.1534/genetics.110.116855 Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, et al (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347-365. http://dx.doi.org/10.1534/genetics.112.147983 Endelman JB, et al (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250-255. http://dx.doi.org/10.3835/plantgenome2011.08.0024 Gmitter Junior FG, Chen C, Machado MA, Souza AA, et al (2012). Citrus genomics. Tree Genet. Genomes 8: 611-626. http://dx.doi.org/10.1007/s11295-012-0499-2 Goddard ME, Hayes BJ, Meuwissen THE, et al (2011). Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x Grattapaglia D, Resende MDV, et al (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 Gussen O, Uzun A, Seday U, Kafa G, et al (2011). QTL analysis and regression model for estimating fruit setting in young Citrus trees based on molecular markers. Sci. Hortic. (Amsterdam) 130: 418-424. http://dx.doi.org/10.1016/j.scienta.2011.07.010 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, et al (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443. http://dx.doi.org/10.3168/jds.2008-1646 Heffner EL, Sorrells ME, Jannink JL, et al (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. http://dx.doi.org/10.2135/cropsci2008.08.0512 Henderson CR (1973). Maximum likelihood estimation of variance components. Unpublished manuscripts, Animal Science Dept., Cornell University. Ito TM, Polido PB, Rampim MC, Kaschuk G, et al (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 13: 7839-7851. http://dx.doi.org/10.4238/2014.September.26.22 Iwata H, Hayashi T, Terakami S, Takada N, et al (2013). Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125-140. http://dx.doi.org/10.1270/jsbbs.63.125 Jaccoud D, Peng K, Feinstein D, Kilian A, et al (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: E25. http://dx.doi.org/10.1093/nar/29.4.e25 Jarrell DC, Roose ML, Traugh SN, Kupper RS, et al (1992). A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49-56. http://dx.doi.org/10.1007/BF00223980 Kemper KE, Goddard ME, et al (2012). Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet. 21 (R1): R45-R51. http://dx.doi.org/10.1093/hmg/dds332 Kumar S, Bink MCAM, Volz RK, Bus VGM, et al (2012). Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 8: 1-14. http://dx.doi.org/10.1007/s11295-011-0425-z Lande R, Thompson R, et al (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. Legarra A, Robert-Granié C, Manfredi E, Elsen JM, et al (2008). Performance of genomic selection in mice. Genetics 180: 611-618. http://dx.doi.org/10.1534/genetics.108.088575 Machado MA, Cristofani-Yaly M, Bastianel M, et al (2011). Breeding, genetic and genomic of citrus for disease resistance. Rev. Bras. Frutic. 33: 158-172. http://dx.doi.org/10.1590/S0100-29452011000500019 Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Misztal I, Legarra A, Aguilar I, et al (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648-4655. http://dx.doi.org/10.3168/jds.2009-2064 Patterson HD, Thompson R, et al (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Resende MDV (2002). Genética Biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação tecnológica. Resende MDV, Duarte JB, et al (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 37: 182-194. Resende MDV, Lopes OS, Silva RL, Pires IE, et al (2008). Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq. Flor. Bra. 56: 63-77. Resende MDV, Resende MFRJrSansaloniCP, Petroli CD, et al (2012). Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x Resende MDV, Silva FF, Resende MFR, Junior. and Azevedo CF (2014). Genome-wide selection. In: Biotechnology and Plant Breeding (Borem A and Fritsche-Neto R, eds.). Elsevier. Resende MFJrMuñozP, Resende MDV, Garrick DJ, et al (2012). Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 Siviero A, Cristofani M, Boava LP, Machado MA, et al (2002). Mapeamento de QTLs associados à produção de frutos e sementes em híbridos de Citrus sunki vs Poncirus trifoliata. Rev. Bras. Frutic. 24: 741-743. http://dx.doi.org/10.1590/S0100-29452002000300045 Siviero A, Cristofani M, Furtado EL, Garcia AAF, et al (2006). Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J. Appl. Genet. 47: 23-28. http://dx.doi.org/10.1007/BF03194595 Talon M and Gmitter Junior FG (2008). Citrus genomics. Intern. J. Plant Genomics: 1-17. Viana AP and Resende MDV (2014). Seleção Genômica Ampla (GWS). In: Genética Quantitativa no Melhoramento de Fruteiras (Viana AP, Resende MDV, eds.). Interciência, Rio de Janeiro. Viana AP, Resende MDV, Riaz S, Walker MA, et al (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. 73: 142-149. http://dx.doi.org/10.1590/0103-9016-2014-0323 Wong CK, Bernardo R, et al (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116: 815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 Zapata-Velenzuela J, Whetten RW, Neale D, Mckeand S, et al (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of Loblolly Pine. Genes Genom. Genet 3: 909-916. Zhao Y, Gowda M, Liu W, Wurschum T, et al (2013). Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breed. 132: 99-106. http://dx.doi.org/10.1111/pbr.12008 Zhong S, Dekkers JCM, Fernando RL, Jannink JL, et al (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182: 355-364. http://dx.doi.org/10.1534/genetics.108.098277
I. B. Gois, Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., and Machado, M. A., Genome wide selection in Citrus breeding, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the research fellowship of the first author. Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes #2007/08435-5 and #2011/18605-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Process #573848/2008-4). REFERENCES Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, et al (2012). The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol. Breed. 29: 575-587. http://dx.doi.org/10.1007/s11032-011-9574-x Cavalcanti JJV, Resende MDV, Santos FHC, Pinheiro CR, et al (2012). Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro. Rev. Bras. Frutic. 34: 840-846. http://dx.doi.org/10.1590/S0100-29452012000300025 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA, et al (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics 185: 1021-1031. http://dx.doi.org/10.1534/genetics.110.116855 Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, et al (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347-365. http://dx.doi.org/10.1534/genetics.112.147983 Endelman JB, et al (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250-255. http://dx.doi.org/10.3835/plantgenome2011.08.0024 Gmitter Junior FG, Chen C, Machado MA, Souza AA, et al (2012). Citrus genomics. Tree Genet. Genomes 8: 611-626. http://dx.doi.org/10.1007/s11295-012-0499-2 Goddard ME, Hayes BJ, Meuwissen THE, et al (2011). Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x Grattapaglia D, Resende MDV, et al (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 Gussen O, Uzun A, Seday U, Kafa G, et al (2011). QTL analysis and regression model for estimating fruit setting in young Citrus trees based on molecular markers. Sci. Hortic. (Amsterdam) 130: 418-424. http://dx.doi.org/10.1016/j.scienta.2011.07.010 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, et al (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443. http://dx.doi.org/10.3168/jds.2008-1646 Heffner EL, Sorrells ME, Jannink JL, et al (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. http://dx.doi.org/10.2135/cropsci2008.08.0512 Henderson CR (1973). Maximum likelihood estimation of variance components. Unpublished manuscripts, Animal Science Dept., Cornell University. Ito TM, Polido PB, Rampim MC, Kaschuk G, et al (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 13: 7839-7851. http://dx.doi.org/10.4238/2014.September.26.22 Iwata H, Hayashi T, Terakami S, Takada N, et al (2013). Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125-140. http://dx.doi.org/10.1270/jsbbs.63.125 Jaccoud D, Peng K, Feinstein D, Kilian A, et al (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: E25. http://dx.doi.org/10.1093/nar/29.4.e25 Jarrell DC, Roose ML, Traugh SN, Kupper RS, et al (1992). A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49-56. http://dx.doi.org/10.1007/BF00223980 Kemper KE, Goddard ME, et al (2012). Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet. 21 (R1): R45-R51. http://dx.doi.org/10.1093/hmg/dds332 Kumar S, Bink MCAM, Volz RK, Bus VGM, et al (2012). Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 8: 1-14. http://dx.doi.org/10.1007/s11295-011-0425-z Lande R, Thompson R, et al (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. Legarra A, Robert-Granié C, Manfredi E, Elsen JM, et al (2008). Performance of genomic selection in mice. Genetics 180: 611-618. http://dx.doi.org/10.1534/genetics.108.088575 Machado MA, Cristofani-Yaly M, Bastianel M, et al (2011). Breeding, genetic and genomic of citrus for disease resistance. Rev. Bras. Frutic. 33: 158-172. http://dx.doi.org/10.1590/S0100-29452011000500019 Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Misztal I, Legarra A, Aguilar I, et al (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648-4655. http://dx.doi.org/10.3168/jds.2009-2064 Patterson HD, Thompson R, et al (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Resende MDV (2002). Genética Biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação tecnológica. Resende MDV, Duarte JB, et al (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 37: 182-194. Resende MDV, Lopes OS, Silva RL, Pires IE, et al (2008). Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq. Flor. Bra. 56: 63-77. Resende MDV, Resende MFRJrSansaloniCP, Petroli CD, et al (2012). Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x Resende MDV, Silva FF, Resende MFR, Junior. and Azevedo CF (2014). Genome-wide selection. In: Biotechnology and Plant Breeding (Borem A and Fritsche-Neto R, eds.). Elsevier. Resende MFJrMuñozP, Resende MDV, Garrick DJ, et al (2012). Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 Siviero A, Cristofani M, Boava LP, Machado MA, et al (2002). Mapeamento de QTLs associados à produção de frutos e sementes em híbridos de Citrus sunki vs Poncirus trifoliata. Rev. Bras. Frutic. 24: 741-743. http://dx.doi.org/10.1590/S0100-29452002000300045 Siviero A, Cristofani M, Furtado EL, Garcia AAF, et al (2006). Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J. Appl. Genet. 47: 23-28. http://dx.doi.org/10.1007/BF03194595 Talon M and Gmitter Junior FG (2008). Citrus genomics. Intern. J. Plant Genomics: 1-17. Viana AP and Resende MDV (2014). Seleção Genômica Ampla (GWS). In: Genética Quantitativa no Melhoramento de Fruteiras (Viana AP, Resende MDV, eds.). Interciência, Rio de Janeiro. Viana AP, Resende MDV, Riaz S, Walker MA, et al (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. 73: 142-149. http://dx.doi.org/10.1590/0103-9016-2014-0323 Wong CK, Bernardo R, et al (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116: 815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 Zapata-Velenzuela J, Whetten RW, Neale D, Mckeand S, et al (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of Loblolly Pine. Genes Genom. Genet 3: 909-916. Zhao Y, Gowda M, Liu W, Wurschum T, et al (2013). Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breed. 132: 99-106. http://dx.doi.org/10.1111/pbr.12008 Zhong S, Dekkers JCM, Fernando RL, Jannink JL, et al (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182: 355-364. http://dx.doi.org/10.1534/genetics.108.098277
S. Wohlres-Viana, Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., Viana, J. H. M., Wohlres-Viana, S., Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., and Viana, J. H. M., Polymorphisms and alternative splicing of the luteinizing hormone receptor of dairy cattle, vol. 15, p. -, 2016.
S. Wohlres-Viana, Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., Viana, J. H. M., Wohlres-Viana, S., Arashiro, E. K. N., Reis, D. R. L., Fernandes, L. E., Peixoto, M. G. C. D., Machado, M. A., and Viana, J. H. M., Polymorphisms and alternative splicing of the luteinizing hormone receptor of dairy cattle, vol. 15, p. -, 2016.
2012
R. J. Pereira, Verneque, R. S., Lopes, P. S., Santana, Jr., M. L., Lagrotta, M. R., Torres, R. A., Filho, A. E. Vercesi, and Machado, M. A., Milk yield persistency in Brazilian Gyr cattle based on a random regression model, vol. 11, pp. 1599-1609, 2012.
Cobuci JA, Euclydes RF, Costa CN, Lopes PS, et al. (2004). Análises da persistência na lactação de vacas da raça holandesa, usando produção no dia do controle e modelo de regressão aleatória. Rev. Bras. Zootec. 33: 546-554. http://dx.doi.org/10.1590/S1516-35982004000300004   Cobuci JA, Costa CN, Teixeira NM and Freitas AF (2006). Utilização dos polinômios de Legendre e da função de Wilmink em avaliações genéticas para persistência na lactação de animais da raça Holandesa. Arq. Bras. Med. Vet. Zootec. 58: 614-623. http://dx.doi.org/10.1590/S0102-09352006000400025   De Roos APW, Harbers AGF and de Jong G (2001). Random regression test-day model in The Netherlands. Interbull Bull. 27: 155-158.   Dekkers JCM, Ten Hag JH and Weersink A (1998). Economic aspects of persistency of lactation in dairy cattle. Livest. Prod. Sci. 53: 237-252. http://dx.doi.org/10.1016/S0301-6226(97)00124-3   Jakobsen JH, Madsen P, Jensen J, Pedersen J, et al. (2002). Genetic parameters for milk production and persistency for Danish Holstein estimated in random regression models using REML. J. Dairy Sci. 85: 1607-1616. http://dx.doi.org/10.3168/jds.S0022-0302(02)74231-8   Jakobsen JH, Rekaya R, Jensen J, Sorensen DA, et al. (2003). Bayesian estimates of covariance components between lactation curve parameters and disease liability in Danish Holstein cows. J. Dairy Sci. 86: 3000-3007. http://dx.doi.org/10.3168/jds.S0022-0302(03)73898-3   Jamrozik J, Schaeffer LR and Dekkers JCM (1997). Genetic evaluation of dairy cattle using test day yields and random regression model. J. Dairy Sci. 80: 1217-1226. http://dx.doi.org/10.3168/jds.S0022-0302(97)76050-8   Kistemaker GJ (2003). Comparison of persistency definitions in random regression test day models. Interbull Bull. 30: 96-98.   Madsen O (1975). A comparison of some suggested measures of persistency of milk yield in dairy cows. Anim. Prod. 20: 191-197. http://dx.doi.org/10.1017/S0003356100035182   Meyer K (2007). WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. 8: 815-821. http://dx.doi.org/10.1631/jzus.2007.B0815 PMid:17973343 PMCid:2064953   Pereira RJ, Santana ML Jr, Bignardi AB, Verneque RS, et al. (2011). Effect of pregnancy on the genetic evaluation of dairy cattle. Genet. Mol. Res. 10: 2190-2201. http://dx.doi.org/10.4238/vol10-3gmr1151 PMid:21968726   Santos FAP, Martinez JC, Greco LF, Carareto R, et al (2007). Suplementação de Vacas sob Pastejo: Considerações Técnicas e Econômicas Visando Maior Rentabilidade. Proceedings of the 8th Simpósio Internacional de Produção Intensiva de Leite. INTERLEITE, Uberlândia, 249-300.   Sölkner J and Fuchs W (1987). A comparison of different measures of persistency with special respect to variation of Test-day milk yields. Livest. Prod. Sci. 16: 305-319. http://dx.doi.org/10.1016/0301-6226(87)90001-7   Togashi K and Lin CY (2006). Selection for milk production and persistency using eigenvectors of the random regression coefficient matrix. J. Dairy Sci. 89: 4866-4873. http://dx.doi.org/10.3168/jds.S0022-0302(06)72535-8   Togashi K and Lin CY (2007). Improvement of lactation milk and persistency using the eigenvectors of the genetic covariance matrix between lactation stages. Livest. Sci. 110: 64-72. http://dx.doi.org/10.1016/j.livsci.2006.10.003
C. S. Nascimento, Peixoto, J. O., Verardo, L. L., Campos, C. F., Weller, M. M. C., Faria, V. R., Botelho, M. E., Martins, M. F., Machado, M. A., Silva, F. F., Lopes, P. S., and Guimarães, S. E. F., Transcript profiling of expressed sequence tags from semimembranosus muscle of commercial and naturalized pig breeds, vol. 11, pp. 3315-3328, 2012.
Bai Q, McGillivray C, da CN, Dornan S, et al. (2003). Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 4: 8. http://dx.doi.org/10.1186/1471-2164-4-8 PMid:12611633 PMCid:152649   Brandt U (2006). Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75: 69-92. http://dx.doi.org/10.1146/annurev.biochem.75.103004.142539 PMid:16756485   Briggs HM and Briggs DM (1969). In Modern Breeds of Livestock. The MacMillan Co., New York.   Conesa A, Gotz S, Garcia-Gomez JM, Terol J, et al. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. http://dx.doi.org/10.1093/bioinformatics/bti610 PMid:16081474   Davoli R, Zambonelli P, Bigi D, Fontanesi L, et al. (1999). Analysis of expressed sequence tags of porcine skeletal muscle. Gene 233: 181-188. http://dx.doi.org/10.1016/S0378-1119(99)00141-9   Davoli R, Fontanesi L, Zambonelli P, Bigi D, et al. (2002). Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. Anim. Genet. 33: 3-18. http://dx.doi.org/10.1046/j.1365-2052.2002.00800.x PMid:11849132   Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921   Ferraz AL, Ojeda A, Lopez-Bejar M, Fernandes LT, et al. (2008). Transcriptome architecture across tissues in the pig. BMC Genomics 9: 173. http://dx.doi.org/10.1186/1471-2164-9-173 PMid:18416811 PMCid:2335121   Guimarães SEF and Lopes OS (2001). Uso de recursos genéticos nativos no mapeamento genético de suínos. Ação Ambiental 15: 27-28.   Hocquette JF, Ortigues-Marty I and Pethick D (1998). Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livest. Prod. Sci. 56: 115-143. http://dx.doi.org/10.1016/S0301-6226(98)00187-0   Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812   Kim NK, Lim JH and Song MJ (2008). Comparisons of longissimus muscle metabolic enzymes and muscle fibre types in Korean and western pig breeds. Meat Sci. 78: 455-460. http://dx.doi.org/10.1016/j.meatsci.2007.07.014 PMid:22062465   Lin CS and Hsu CW (2005). Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J. Anim. Sci. 83: 2075-2086. PMid:16100062   Lopes PS, Guimarães SEF, Pires AV, Soares MAM, et al. (2002). Performance, Carcass Yield and Meat Quality Traits of F2 Crosses Between Brazilian Native and Commercial Pigs for QTL Mapping. Proceedings in World Congresss on Genetics Applied to Livestock Production: Montpellier, 155-158.   Mégy K, Audic S and Claverie JM (2002). Heart-specific genes revealed by expressed sequence tag (EST) sampling. Genome Biol. 3: RESEARCH0074.   Min XJ, Butler G, Storms R and Tsang A (2005). TargetIdentifier: a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res. 33: W669-W672. http://dx.doi.org/10.1093/nar/gki436 PMid:15980559 PMCid:1160197   Nobis W, Ren X, Suchyta SP, Suchyta TR, et al. (2003). Development of a porcine brain cDNA library, EST database, and microarray resource. Physiol. Genomics 16: 153-159. http://dx.doi.org/10.1152/physiolgenomics.00099.2003 PMid:14559975   Rehfeldt C, Henning M and Fiedler I (2008). Consequences of pig domestication for skeletal muscle growth and cellularity. Livest. Sci. 116: 30-41. http://dx.doi.org/10.1016/j.livsci.2007.08.017   Sambrook J and Russell DW (2001). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor.   Serão NV, Veroneze R, Ribeiro AM, Verardo LL, et al. (2011). Candidate gene expression and intramuscular fat content in pigs. J. Anim. Breed. Genet. 128: 28-34. http://dx.doi.org/10.1111/j.1439-0388.2010.00887.x PMid:21214641   Souza CA, Paiva SR, Pereira RW, Guimaraes SE, et al. (2009). Iberian origin of Brazilian local pig breeds based on Cytochrome b (MT-CYB) sequence. Anim. Genet. 40: 759-762. http://dx.doi.org/10.1111/j.1365-2052.2009.01899.x PMid:19422368   Tang Z, Li Y, Wan P, Li X, et al. (2007). LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol. 8: R115. http://dx.doi.org/10.1186/gb-2007-8-6-r115 PMid:17573972 PMCid:2394763   Vianna AT (1985). Os Suínos. 14ª ed. Editora Nobel, São Paulo.   Wang XL, Wu KL, Li N, Li CL, et al. (2006). Analysis of expressed sequence tags from skeletal muscle-specific cDNA library of Chinese native Xiang pig. Yi Chuan Xue Bao 33: 984-991. PMid:17112969   Wimmers K, Ngu NT, Jennen DG, Tesfaye D, et al. (2008). Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. J. Anim. Sci. 86: 795-803. http://dx.doi.org/10.2527/jas.2006-521 PMid:18156349   Wu J, Zhou D, Deng C, Wu X, et al. (2008). Characterization of porcine ENO3: genomic and cDNA structure, polymorphism and expression. Genet. Sel. Evol. 40: 563-579. PMid:18694551 PMCid:2674891
2011
C. S. Nascimento, Machado, M. A., Guimarães, S. E. F., Martins, M. F., Peixoto, J. O., Furlong, J., Prata, M. C. A., Verneque, R. S., Teodoro, R. L., and Lopes, P. S., Expressed sequenced tags profiling of resistant and susceptible Gyr x Holstein cattle infested with the tick Rhipicephalus (Boophilus) microplus, vol. 10, pp. 3803-3816, 2011.
Adachi W, Kawamoto S, Ohno I, Nishida K, et al. (1998). Isolation and characterization of human cathepsin V: a major proteinase in corneal epithelium. Invest. Ophthalmol. Vis. Sci. 39: 1789-1796. PMid:9727401 Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917 Band MR, Larson JH, Rebeiz M, Green CA, et al. (2000). An ordered comparative map of the cattle and human genomes. Genome Res. 10: 1359-1368. http://dx.doi.org/10.1101/gr.145900 PMid:10984454 PMCid:310912 Birnboim HC and Doly J (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523. http://dx.doi.org/10.1093/nar/7.6.1513 PMid:388356 PMCid:342324 Boldman KG, Kriese LA and Van Vleck LD (1995). A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances. Department of Agriculture/Agricultural Research Service U.S. USDA-ARS, Lincoln. Causton HC, Ren B, Koh SS, Harbison CT, et al. (2001). Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12: 323-337. PMid:11179418 PMCid:30946 Colige A, Ruggiero F, Vandenberghe I, Dubail J, et al. (2005). Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J. Biol. Chem. 280: 34397-34408. http://dx.doi.org/10.1074/jbc.M506458200 PMid:16046392 Conesa A, Gotz S, Garcia-Gomez JM, Terol J, et al. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. http://dx.doi.org/10.1093/bioinformatics/bti610 PMid:16081474 Dean MD, Clark NL, Findlay GD, Karn RC, et al. (2009). Proteomics and comparative genomic investigations reveal heterogeneity in evolutionary rate of male reproductive proteins in mice (Mus domesticus). Mol. Biol. Evol. 26: 1733-1743. http://dx.doi.org/10.1093/molbev/msp094 PMid:19420050 PMCid:2734151 Doudna JA and Rath VL (2002). Structure and function of the eukaryotic ribosome: the next frontier. Cell 109: 153-156. http://dx.doi.org/10.1016/S0092-8674(02)00725-0 Douglas SE, Gallant JW, Bullerwell CE, Wolff C, et al. (1999). Winter flounder expressed sequence tags: Establishment of an EST database and identification of novel fish genes. Mar. Biotechnol. 1: 458-0464. http://dx.doi.org/10.1007/PL00011802 Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921 Gill JL, Ericsson GF and Helland IS (1986). Precision of assessing anthelmintic efficacy. Biometrics 42: 981-987. http://dx.doi.org/10.2307/2530714 PMid:3814739 Gumbiner BM (1993). Breaking through the tight junction barrier. J. Cell Biol. 123: 1631-1633. http://dx.doi.org/10.1083/jcb.123.6.1631 PMid:8276885 Hale LP, Patel DD, Clark RE and Haynes BF (1995). Distribution of CD44 variant isoforms in human skin: differential expression in components of benign and malignant epithelia. J. Cutan. Pathol. 22: 536-545. http://dx.doi.org/10.1111/j.1600-0560.1995.tb01148.x PMid:8835172 Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812 Itoh T, Watanabe T, Ihara N, Mariani P, et al. (2005). A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 85: 413-424. http://dx.doi.org/10.1016/j.ygeno.2004.12.007 PMid:15780744 Machado MA, Azevedo AL, Teodoro RL, Pires MA, et al. (2010). Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus x Bos indicus). BMC Genom. 11: 280. http://dx.doi.org/10.1186/1471-2164-11-280 PMid:20433753 PMCid:2880304 Martinez ML, Machado MA, Nascimento CS, Silva MV, et al. (2006). Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genet. Mol. Res. 5: 513-524. PMid:17117367 Metzelaar MJ, Wijngaard PL, Peters PJ, Sixma JJ, et al. (1991). CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J. Biol. Chem. 266: 3239-3245. PMid:1993697 Sambrook J and Russel DW (2001). Molecular Cloning. A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor. Smothers CD, Sun F and Dayton AD (1999). Comparison of arithmetic and geometric means as measures of a central tendency in cattle nematode populations. Vet. Parasitol. 81: 211-224. http://dx.doi.org/10.1016/S0304-4017(98)00206-4 Villares JB (1941). Climatologia Zootecnica III: Contribuição ao Estudo de Resistência e Susceptibilidade Genética dos Bovinos ao Boophilus microplus. In: Boletim da Indústria Animal: 8-9 July 1941, Edited by Nova Serie, São Paulo. Wang YH, Reverter A, Kemp D and McWilliam SM (2007). Gene expression profiling of Hereford Shorthorn cattle following challenge with Boophilus microplus tick larvae. Aust. J. Exp. Agr. 47: 1397-1407. http://dx.doi.org/10.1071/EA07012 Westfall PH and Young SS (1993). Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment. John Wiley & Sons, Inc., New York. Wharton RH and Utech KBW (1970). The relation between engorgement and dropping of Boophilus microplus (Canestrini) (Ixodidae) to the assessment of tick numbers on cattle. 171. Wilkinson PR (1962). Selection of cattle for tick resistance, and the effect of herds of different susceptibility on Boophilus populations. Aust. J. Agr. Res. 13: 974-983. http://dx.doi.org/10.1071/AR9620974 Willadsen P and Jongejan F (1999). Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol. Today 15: 258-262. http://dx.doi.org/10.1016/S0169-4758(99)01472-6 Wind AE, Larkin DM, Green CA and Elliott JS (2005). A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution. Proc. Nat. Acad. Sci. U. S. A. 102: 18526-18531. http://dx.doi.org/10.1073/pnas.0509285102 PMid:16339895 PMCid:1317968 Wool IG (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165. PMid:8871397
R. Domingues, Machado, M. A., Forzza, R. C., Melo, T. D., Wohlres-Viana, S., and Viccini, L. F., Genetic variability of an endangered Bromeliaceae species (Pitcairnia albiflos) from the Brazilian Atlantic rainforest, vol. 10, pp. 2482-2491, 2011.
Allnutt TR, Newton AC, Premoli A and Lara A (2003). Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers. Biol. Conserv. 114: 245-253. http://dx.doi.org/10.1016/S0006-3207(03)00044-2 Auge H, Neuffer B, Erlinghagen F, Grupe R, et al. (2001). Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet. Mol. Ecol. 10: 1811-1819. http://dx.doi.org/10.1046/j.0962-1083.2001.01311.x PMid:11472548 Barbara T, Martinelli G, Palma-Silva C, Fay MF, et al. (2009). Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical ‘inselbergs’: Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Ann. Bot. 103: 65-77. http://dx.doi.org/10.1093/aob/mcn226 PMid:19074451    PMCid:2707295 Bussell JD (1999). The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol. 8: 775-789. http://dx.doi.org/10.1046/j.1365-294X.1999.00627.x Cavallari MM, Forzza R, Veasey EA, Zucchi MI, et al. (2006). Genetic variation in three endangered species of Encholirium (Bromeliaceae) from Cadeia do Espinhaço, Brazil, detected using RAPD markers. Biodivers. Conserv. 15: 4357-4373. http://dx.doi.org/10.1007/s10531-005-3741-5 Cruz CD (2008). Programa Genes Diversidade Genética. Editora UFV, Viçosa. Dayanandan S, Dole J, Bawa K and Kesseli R (1999). Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol. Ecol. 8: 1585-1592. http://dx.doi.org/10.1046/j.1365-294x.1999.00735.x PMid:10583822 Ercan AG, Taskin M and Turgut K (2004). Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet. Res. Crop Evol. 51: 599-607. http://dx.doi.org/10.1023/B:GRES.0000024651.45623.f2 Hamrick JL and Godt MJW (1989). Allozyme Diversity in Plant Species. In: Plant Population Genetics, Breeding and Genetic Resources (Brown AHD, Clegg MT, Kahler AL and Weir BS, eds.). Sinauer, Sunderland, 43-63. Jaccard P (1901). Édute Comparative de la Distribution Florale Dans une Portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, Lausanne, 547-579. Kruckeberg AR and Rabinowitz D (1985). Biological aspects of endemism in higher plants. Annu. Rev. Ecol. Syst. 16: 447-479. http://dx.doi.org/10.1146/annurev.es.16.110185.002311 Liu P, Yang YS, Xu G and Hao C (2006). Physiological response of rare and endangered seven-son-flower (Heptacodium miconioides) to light stress under habitat fragmentation. Environ. Exp. Bot. 57: 32-40. http://dx.doi.org/10.1016/j.envexpbot.2005.04.003 Loveless MD and Hamrick JL (1984). Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65-95. http://dx.doi.org/10.1146/annurev.es.15.110184.000433 Mamuris Z, Sfougaris AI and Stamatis C (2001). Genetic structure of Greek brown hare (Lepus europaeus) populations as revealed by mtDBNA RFLP-PCR analysis: implications for conserving genetic diversity. Biol. Conserv. 101: 187-196. http://dx.doi.org/10.1016/S0006-3207(01)00065-9 McGlaughlin ME and Friar EA (2007). Clonality in the endangered Ambrosia pumila (Asteraceae) inferred from RAPD markers; Implications for conservation and management. Conserv. Genet. 8: 319-330. http://dx.doi.org/10.1007/s10592-006-9171-4 Ministério do Meio Ambiente (2010). Available at [http://www.mma.gov.br/estruturas/ascom_boletins/_arquivos/83_19092008034949.pdf]. Accessed December 16, 2010. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, et al. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853-858. http://dx.doi.org/10.1038/35002501 PMid:10706275 Parani M, Singh KN, Rangasamy S and Ramalingam RS (1997). Identification of Sesamum alatum x Sesamum indicum hybrid using protein, isozyme and RAPD markers. Indian J. Genet. 57: 381-388. Ruggiero MV, Reusch TB and Procaccini G (2005). Local genetic structure in a clonal dioecious angiosperm. Mol. Ecol. 14: 957-967. http://dx.doi.org/10.1111/j.1365-294X.2005.02477.x PMid:15773928 Sgorbati S, Labra M, Grugni E, Barcaccia G, et al. (2004). A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biol. 6: 222-230. http://dx.doi.org/10.1055/s-2004-817802 PMid:15045675 Sharma IK, Clements MA and Jones DL (2000). Observations of high genetic variability in the endangered Australian terrestrial orchid Pterostylis gibbosa R. Br. (Orchidaceae). Biochem. Syst. Ecol. 28: 651-663. http://dx.doi.org/10.1016/S0305-1978(99)00107-6 Skroch PW and Nienhuis J (1995). Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet. 91: 1086-1091. http://dx.doi.org/10.1007/BF00223923 Stankiewicz M, Gadamski G and Gawronski SW (2001). Genetic variation and phylogenetic relationships of triazine-resistant and triazine-susceptible biotypes of Solanum nigrum- using RAPD markers. Weed Res. 41: 287-300. http://dx.doi.org/10.1046/j.1365-3180.2001.00238.x Stanton ML, Galen C and Shore J (1997). Population structure along a steep environmental gradient: consequences of flowering time and habitat variation in the snow buttercup, Ranunculus adoneus. Evolution 51: 79-94. http://dx.doi.org/10.2307/2410962 Tansley SA and Brown CR (2000). RAPD variation in the rare and endangered Leucadendron elimense (Proteaceae): implications for their conservation. Biol. Conserv. 95: 39-48. http://dx.doi.org/10.1016/S0006-3207(00)00015-X Thompson JN (1999). Specific hypothesis on the geographic mosaic of coevolution. Am. Nat. 153: 156-174. http://dx.doi.org/10.1086/303208 Viccini LF, Costa DSC, Machado MA and Campos AL (2004). Genetic diversity among nine species of Lippia (Verbenaceae) based on RAPD markers. Plant Syst. Evol. 246: 1-8. http://dx.doi.org/10.1007/s00606-003-0079-x Wade M and Goodnight CJ (1998). The theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52: 1537-1553. http://dx.doi.org/10.2307/2411328 Weising K, Nybom H, Wolff K and Meyer W (1995). DNA Fingerprinting in Plants and Fungi, CRC Press, Boca Raton. Wendt T (1994). Pitcairnia L’Heritier (Bromeliaceae) of Rio de Janeiro State. Selbyana 15: 66-78. Wendt T and Chamas CC (1997). As Pitcairnias do leste do Brasil - suas verdadeiras identidades. Bromelia 4: 12-18. Wendt T, Canela MBF, Faria APG and Rios RI (2001). Reproductive biology and natural hybridization between two endemic species of Pitcairnia (Bromeliaceae). Am. J. Bot. 88: 1760-1767. http://dx.doi.org/10.2307/3558350 PMid:21669607 Wendt T, Canela MBF, Klein DE and Rios RI (2002). Selfing facilitates reproductive isolation among three sympatric species of Pitcairnia (Bromeliaceae). Plant Syst. Evol. 232: 201-212. http://dx.doi.org/10.1007/s006060200043 Wyatt R, Evans EA and Sorenson JC (1992). The evolution of self-pollination in granite outcrop species of Arenaria (Caryophyllaceae). VI. Electrophoretically detectable genetic variation. Syst. Bot. 17: 201-209. http://dx.doi.org/10.2307/2419517 Xie ZZ, Lu YY, Ge S, Hong DD, et al. (2001). Clonality in wild rice (Oryza rufipogon, Poaceae) and its implications for conservation management. Am. J. Bot. 88: 1058-1064. http://dx.doi.org/10.2307/2657088 PMid:11410470 Yeh FC, Yang RC and Boyle T (1997). POPGENE Version 1.3 (32-bit). Population Genetic Analysis. University of Alberta and Center for International Forestry Research, Alberta. Young AG and Boyle TJ (2000). Forest Fragmentation. In: Forest Conservation Genetics (Young A, Boshier D and Boyle T, eds.). CSIRO Publishing, Melbourne, 123-135. Young A, Boyle T and Brown T (1996). The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11: 413-418. http://dx.doi.org/10.1016/0169-5347(96)10045-8
A. L. S. Azevedo, Costa, P. P., Machado, M. A., de Paula, C. M. P., and Sobrinho, F. S., High degree of genetic diversity among genotypes of the forage grass Brachiaria ruziziensis (Poaceae) detected with ISSR markers, vol. 10, pp. 3530-3538, 2011.
Ali ML, Rajewski JF, Baenziger PS, Gill KS, et al. (2008). Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol. Breed. 21: 497-509. http://dx.doi.org/10.1007/s11032-007-9149-z Ambiel AC, Machado Neto NB, Guaberto LM and Vanderlei TM (2010). Brachiaria germplasm dissimilarity as shown by RAPD markers. Crop Breed. Appl. Biotechnol. 10: 55-64. Balasaravanan T, Pius PK, Kumar RR, Muraleedharan N, et al. (2003). Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Sci. 165: 365-372. http://dx.doi.org/10.1016/S0168-9452(03)00196-1 Becelaere GV, Edward LL, Paterson AH and Chee PW (2005). Pedigree- vs. DNA marker-based genetic similarity estimates in cotton. Crop Sci. 45: 2281-2287. http://dx.doi.org/10.2135/cropsci2004.0715 Bonato ALV, Calvo ES, Geraldi IO and Arias CAA (2006). Genetic similarity among soybean (Glycine max (L) Merrill) cultivars released in Brazil using AFLP markers. Genet. Mol. Biol. 29: 692-704. http://dx.doi.org/10.1590/S1415-47572006000400019 Chiari L, Rocha M, Valle CB and Salgado LR (2008). Variabilidade Genética em Acessos e Cultivares de Quatro Espécies de Brachiaria Estimada por Marcadores RAPD. Boletim de Pesquisa e Desenvolvimento, Embrapa Gado de Corte, Campo Grande. Cruz CD (2008). Programa Genes - Diversidade Genética. 1ª ed. Editora UFV, Viçosa. Dávila JA, Loarce Y and Ferrer E (1999). Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley. Theor. Appl. Genet. 98: 265-273. http://dx.doi.org/10.1007/s001220051067 Devarumath R, Nandy S, Rani V, Marimuthu S, et al. (2002). RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp assamica (Assam-India type). Plant Cell Rep. 21: 166-173. http://dx.doi.org/10.1007/s00299-002-0496-2 Diaby M and Casler MD (2005). RAPD marker variation among divergent selections for fiber concentration in smooth bromegrass. Crop Sci. 45: 27-35. Dusi DMA (2001). Apomixis in Brachiaria decumbens Stapf. PhD. thesis, Wageningen University, Wageningen. Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020 Ferdinandez YSN, Somers DJ and Coulman BE (2001). Estimating the genetic relationship of hybrid bromegrass to smooth bromegrass and meadow bromegrass using RAPD markers. Plant Breed. 120: 149-153. http://dx.doi.org/10.1046/j.1439-0523.2001.00555.x Ferreira ME and Grattapaglia D (1995). Introdução ao Uso de Marcadores Moleculares em Análise Genética. Embrapa, Brasília. Guaberto LM (2009). Identificação da Variabilidade Genética de Brachiaria ruziziensis por Marcadores Moleculares. Master's thesis, Universidade do Oeste Paulista, Presidente Prudente. Hamrick JL (1983). The Distribution of Genetic Variation Within and Among Natural Forest Population. In: Genetics and Conservation (Schonewaldcox CM, ed.). Benjamin/Cummings, Menlo Park, 335-348. Huff DR, Peakall R and Smouse PE (1993). RAPD variation within and among natural population of out crossing buffalo grass (Buchloe dactyloides (Nutt.) Englm.). Theor. Appl. Genet. 86: 927-934. http://dx.doi.org/10.1007/BF00211043 Jaccard P (1908). Nouvelles recherches sur la distribution florale. Bul. Soc. Vaudoise Sci. Nat. 44: 223-270. Joshi P and Dhawan V (2007). Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol. Plant 51: 22-26. http://dx.doi.org/10.1007/s10535-007-0005-0 Kapila RK, Yadav RS, Plaha P, Rai KN, et al. (2008). Genetic diversity among pearl millet maintainers using microsatellite markers. Plant Breed. 127: 33-37. Khan IA, Awan FS, Ahmad A, Fu YB, et al. (2005). Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genet. Res. Crop Evol. 52: 239-244. http://dx.doi.org/10.1007/s10722-004-5730-z Larson SR, Palazzo AJ and Jensen KB (2003). Identification of western wheatgrass cultivars and accessions by DNA fingerprinting and geographic provenance. Crop Sci. 43: 394-401. http://dx.doi.org/10.2135/cropsci2003.0394 Lowe AJ, Thorpe W, Teale A and Hanson J (2003). Characterisation of germplasm accessions of Napier grass (Pennisetum purpureum and P. purpureum x P. glaucum hybrids) and comparison with farm clones using RAPD. Genet. Res. Crop Evol. 50: 121-132. http://dx.doi.org/10.1023/A:1022915009380 Macedo MCM (2009). Integração lavoura e pecuária: o estado da arte e inovações tecnológicas. Rev. Bras. Zootec. 38: 133-146. http://dx.doi.org/10.1590/S1516-35982009001300015 Martha Júnior GB and Corsi M (2001). Pastagens no Brasil: situação atual e perspectivas. Preços Agrícolas 15: 3-6. Martos V, Royo C, Rharrabti Y and Garcia del Moral LF (2005). Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crop Res. 91: 107-116. http://dx.doi.org/10.1016/j.fcr.2004.06.003 Nesbitt KA, Potts BM, Vaillancourt RE, West AK, et al. (1995). Partitioning and distribution of RAPD variation in forest tree species, Eucalyptus globulus (Myrtaceae). Heredity 74: 628-637. http://dx.doi.org/10.1038/hdy.1995.86 Pereira AV (1998). Melhoramento Genético de Plantas Forrageiras. In: Simpósio Sobre Atualização em Genética e Melhoramento de Plantas. UFLA/FAEPE, Lavras, 135-162. Powell W, Morgante M and Andre C (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. http://dx.doi.org/10.1007/BF00564200 Prevost A and Wilkinson MJ (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato accessions. Theor. Appl. Genet. 98: 107-112. http://dx.doi.org/10.1007/s001220051046 Reddy MP, Sarla N and Siddiq EA (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9-17. http://dx.doi.org/10.1023/A:1020691618797 Rivas M (2001). Sistema reproductivo y estructura genética de poblaciones de Bromus auleticus Trinius ex-Nees (Poaceae). Estudio mediante isoenzimas. Agrociencia 5: 32-40. Russell JR, Fuller JD, Macaulay M, Hatz BG, et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95: 714-722. http://dx.doi.org/10.1007/s001220050617 Sokal RR and Rohlf FJ (1962). The comparison of dendrograms by objective methods. Taxon 9: 33-40. http://dx.doi.org/10.2307/1217208 Souza Sobrinho F, Lédo FJS, Kopp MM, Pereira AV, et al. (2009). Melhoramento de Gramíneas Forrageiras na Embrapa Gado de Leite. In: Forragicultura e Pastagem (Evangelista AR and Souza FF, eds.). Editora UFLA, Lavras, 98-111. Souza Sobrinho F, Auad AM and Lédo FJS (2010). Genetic variability in Brachiaria ruziziensis for resistance to spittlebugs. Crop Breed. Appl. Biotechnol. 10: 83-88. Sreedhar RV, Venkatachalam L and Bhagyalakshmi N (2007). Genetic fidelity of long-term micropropagated shoot cultures of vanilla (Vanilla planifolia Andrews) as assessed by molecular markers. Biotechnol. J. 2: 1007-1013. http://dx.doi.org/10.1002/biot.200600229 PMid:17427995 Terzopoulos PJ, Kolano B, Bebeli PJ, Kaltsikes PJ, et al. (2005). Identification of Olea europaea L. cultivars using inter-simple sequence repeat markers. Sci. Hortic. 105: 45-51. http://dx.doi.org/10.1016/j.scienta.2005.01.011 Ubi BE, Kölliker R, Fujimori M and Komatsu T (2003). Genetic diversity in diploid cultivars of rhodes grass determined on basis of amplified fragment length polymorphism markers. Crop Sci. 43: 1516-1522. http://dx.doi.org/10.2135/cropsci2003.1516 Vieira EA, Castro CM, Oliveira AC, Carvalho FIF, et al. (2004). Genetic structure of annual ryegrass (Lolium multiflorum) populations estimated by RAPD. Sci. Agric. 61: 407-413. http://dx.doi.org/10.1590/S0103-90162004000400009 Weir BS (1990). Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sinauer Associates, Sunderland. Yanaka YF, Dall'Agnol M, Schifino-Wittmann MT, Dias PMB, et al. (2005). Variabilidade genética em populações naturais de Bromus auleticus Trin. ex Nees (Poaceae) com base em isoenzimas e marcadores RAPD. Rev. Soc. Bras. Zootec. 34: 1897-1904. http://dx.doi.org/10.1590/S1516-35982005000600013
A. A. Silva, Azevedo, A. L. S., Gasparini, K., Verneque, R. S., Peixoto, M. G. C. D., Panetto, B. R., Guimarães, S. E. F., and Machado, M. A., Quantitative trait loci affecting lactose and total solids on chromosome 6 in Brazilian Gir dairy cattle, vol. 10, pp. 3817-3827, 2011.
Arnold JW, Bertrand JK and Benyshek LL (1992). Animal model for genetic evaluation of multibreed data. J. Anim. Sci. 70: 3322-3332. PMid:1459893   Ashwell MS, Van Tassell CP and Sonstegard TS (2001). A genome scan to identify quantitative trait loci affecting economically important traits in a US Holstein population. J. Dairy Sci. 84: 2535-2542. http://dx.doi.org/10.3168/jds.S0022-0302(01)74705-4   Barendse W, Armitage SM, Kossarek LM, Shalom AB et al. (1994). A preliminary map of the bovine genome. Nat. Genet. 6: 227-235. http://dx.doi.org/10.1038/ng0394-227 PMid:8012383   Bishop MD, Kappes SM, Keele JW, Stone RT, et al. (1994). A genetic linkage map for cattle. Genetics 136: 619-639. PMid:7908653 PMCid:1205813   Cant JP, Trout DR, Qiao F and Purdie NG (2002). Milk synthetic response of the bovine mammary gland to an increase in the local concentration of arterial glucose. J. Dairy Sci. 85: 494-503. http://dx.doi.org/10.3168/jds.S0022-0302(02)74100-3   Chen HY, Zhang Q, Yin CC, Wang CK, et al. (2006). Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by daughter design. J. Dairy Sci. 89: 782-790. http://dx.doi.org/10.3168/jds.S0022-0302(06)72140-3   Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971. PMid:7851788 PMCid:1206241   Darvasi A, Weinreb A, Minke V, Weller JI, et al. (1993). Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943-951. PMid:8349116 PMCid:1205528   Georges M, Nielsen D, Mackinnon M, Mishra A, et al. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139: 907-920. PMid:7713441 PMCid:1206390   Green P, Falls K and Crooks S (1990). CRI-MAP Documentation, Version 2.4. Available at [http://linkage.rockefeller.edu./soft/crimap/]. Accessed .......... Haley CS and Knott SA (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.   Heyen DW, Weller JI, Ron M, Band M, et al. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics 1: 165-175. PMid:11015574   Ihara N, Takasuga A, Mizoshita K, Takeda H, et al. (2004). A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14: 1987-1998. http://dx.doi.org/10.1101/gr.2741704 PMid:15466297 PMCid:524423   Khatkar MS, Thomson PC, Tammen I and Raadsma HW (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36: 163-190. http://dx.doi.org/10.1186/1297-9686-36-2-163 PMid:15040897 PMCid:2697184   Knott SA, Elsen JM and Haley CS (1996). Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71-80. http://dx.doi.org/10.1007/BF00225729   Lipkin E, Mosig MO, Darvasi A, Ezra E, et al. (1998). Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage. Genetics 149: 1557-1567. PMid:9649542 PMCid:1460242   Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105   Martinez ML, Verneque RS, Teodoro RL, Silva MV et al. (2005). Programa Nacional de Melhoramento do Gir Leiteiro. Resultados do Teste de Progênie - 13º Grupo. Embrapa Gado de Leite, Juiz de Fora.   Mosig MO, Lipkin E, Khutoreskaya G, Tchourzyna E, et al. (2001). A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics 157: 1683-1698. PMid:11290723 PMCid:1461602   Neville MC, Allen JC and Watters C (1983). The Mechanisms of Milk Secretion. In: Lactation: Physiology, Nutrition, and Breast-Feeding (Neville MC and Neifert MR, eds.). Plenum, New York, 49-99.   Olsen HG, Gomez-Raya L, Vage DI, Olsaker I, et al. (2002). A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J. Dairy Sci. 85: 3124-3130. http://dx.doi.org/10.3168/jds.S0022-0302(02)74400-7   Ron M, Blanc Y, Band M, Ezra E, et al. (1996). Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement. J. Dairy Sci. 79: 676-681. http://dx.doi.org/10.3168/jds.S0022-0302(96)76413-5   Ron M, Kliger D, Feldmesser E, Seroussi E, et al. (2001). Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics 159: 727-735. PMid:11606547 PMCid:1461848   Sambrook J and Rusell DW (2001). Molecular Cloning: A laboratory Manual. 3th edn. CSH Press.   Santiago AA (1985). O Zebu na Índia, no Brasil e no Mundo. Instituto Campineiro de Ensino Agrícola, Campinas.   Seaton G, Hernández-Sánchez J, Grunchec JA, White I, et al (2006). A Grid Portal for QTL Mapping of Compute Intensive Datasets. In: Proceedings of 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 136-143.   Shahbazkia HR, Aminlari M, Tavasoli A, Mohamadnia AR, et al. (2010). Associations among milk production traits and glycosylated haemoglobin in dairy cattle; importance of lactose synthesis potential. Vet. Res. Commun. 34: 1-9. http://dx.doi.org/10.1007/s11259-009-9324-2 PMid:19851880   Verneque RS, Panetto JCC, Bruneli FAT and Geraldo CC (2011). Programa Nacional de Melhoramento de Gir Leiteiro - Sumario Brasileiro de Touros - Resultado do Teste de Progênie. Embrapa Gado de Leite, Juiz de Fora.   Viitala SM, Schulman NF, de Koning DJ, Elo K, et al. (2003). Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J. Dairy Sci. 86: 1828-1836. http://dx.doi.org/10.3168/jds.S0022-0302(03)73769-2   Weller JI, Kashi Y and Soller M (1990). Power of "daughter and granddaughter" designs for genetic mapping of quantitative traits in dairy cattle using genetic markers. J. Dairy Sci. 73: 2525-2532. http://dx.doi.org/10.3168/jds.S0022-0302(90)78938-2   Welper RD and Freeman AE (1992). Genetic parameters for yield traits of Holsteins, including lactose and somatic cell score. J. Dairy Sci. 75: 1342-1348. http://dx.doi.org/10.3168/jds.S0022-0302(92)77885-0   Zhang Q, Boichard D, Hoeschele I, Ernst C, et al. (1998). Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149: 1959-1973. PMid:9691050 PMCid:1460288   Zhao FQ and Keating AF (2007). Invited review: Expression and regulation of glucose transporters in bovine mammary gland. J. Dairy Sci. 90: E76-E86. http://dx.doi.org/10.3168/jds.2006-470 PMid:17517754
2010
C. S. Nascimento, Machado, M. A., Guimarães, S. E. F., Guimarães, M. F. M., Peixoto, J. O., Furlong, J., Prata, M. C. A., Verneque, R. S., Teodoro, R. L., and Lopes, P. S., Differential expression of genes in resistant versus susceptible Gyr x Holstein cattle challenged with the tick Rhipicephalus (Boophilus) microplus, vol. 9. pp. 1974-1979, 2010.
Bobek LA and Levine MJ (1992). Cystatins-inhibitors of cysteine proteinases. Crit. Rev. Oral Biol. Med. 3: 307-332. PMid:1391414   Heiner I, Eisfeld J and Luckhoff A (2003). Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33: 533-540. http://dx.doi.org/10.1016/S0143-4160(03)00058-7   Jansen BJ, van Ruissen F, de Jongh G, Zeeuwen PL, et al. (2001). Serial analysis of gene expression in differentiated cultures of human epidermal keratinocytes. J. Invest. Dermatol. 116: 12-22. http://dx.doi.org/10.1046/j.1523-1747.2001.00218.x PMid:11168793   Kotsyfakis M, Sá-Nunes A, Francischetti IM, Mather TN, et al. (2006). Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 281: 26298-26307. http://dx.doi.org/10.1074/jbc.M513010200 PMid:16772304   Montell C, Birnbaumer L and Flockerzi V (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598. http://dx.doi.org/10.1016/S0092-8674(02)00670-0   Paesen GC, Adams PL, Nuttall PA and Stuart DL (2000). Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim. Biophys. Acta 1482: 92-101. http://dx.doi.org/10.1016/S0167-4838(00)00168-0   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:55695   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Teodoro RL, Pires MFA, Furlong J, Prata MCA, et al (2006). Estimativas de Parâmetros Genéticos e Fenotípicos para a Resistência a Carrapatos e Bernes em uma População Experimental F2 Holandês x Gir. In: Anais da 43a. Reunião Anual da Sociedade Brasileira de Zootecnia (SBZ, ed.), João Pessoa. (CD ROM).   Utech KBW, Seifert GW and Wharton RH (1978). Breeding Australian lllawarra Shorthorn cattle for resistance to Boophilus microplus. I. Factors affecting resistance. Aust. J. Agric. Res. 29: 411-422. http://dx.doi.org/10.1071/AR9780411   Villares JB (1941). Climatologia Zootécnica. III. Contribuição ao Estudo de Resistência e Susceptibilidade Genética dos Bovinos ao Boophilus microplus. In: Boletim da Indústria Animal. Nova Série, São Paulo, 4: 60-86.
A. M. Auad, Domingues, R., Machado, M. A., Souza, L. S., Carvalho, G. S., and Paula-Moraes, S. V., Genetic variability of Mahanarva sp (Hemiptera: Cercopidae) collected from different sites in Brazil, vol. 9. pp. 1005-1010, 2010.
Bussell JD (1999). The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol. 8: 775-789. http://dx.doi.org/10.1046/j.1365-294X.1999.00627.x   Castiglioni L and de Campos Bicudo HE (2005). Molecular characterization and relatedness of Haematobia irritans (horn fly) populations, by RAPD-PCR. Genetica 124: 11-21. http://dx.doi.org/10.1007/s10709-004-4309-0 PMid:16010999   Castro U, Cardona C, Vera-Graziano J, Miles J, et al. (2007). Identificación morfológica y molecular de Prosapia simulans (Walker) (Hemiptera: Cercopidae), y selección y mecanismos de resistencia a este salivazo en híbridos de Brachiaria. Neotrop. Entomol. 36: 547-554. http://dx.doi.org/10.1590/S1519-566X2007000400012 PMid:17934620   de Oliveira CM, Lopes JR, Camargo LE, Fungaro MH, et al. (2007). Genetic diversity in populations of Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae) from distant localities in Brazil assessed by RAPD-PCR markers. Environ. Entomol. 36: 204-212. http://dx.doi.org/10.1603/0046-225X(2007)36[204:GDIPOD]2.0.CO;2   Ercan AG, Taskin M and Turgut K (2004). Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet. Res. Crop Evol. 51: 599-607. http://dx.doi.org/10.1023/B:GRES.0000024651.45623.f2   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Ferreira ME and Grattapaglia D (1955). Introdução ao Uso de Marcadores Moleculares em Análise Genética. 2nd edn. EMBRAPA/CENARGEN, Brasília.   Hawkins BA and Lawton JH (1995). Latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia 102: 31-36.   Mikac KM and Clarke GM (2006). Tracing the geographic origin of the cosmopolitan parthenogenetic insect pest Liposcelis bostrychophila (Psocoptera: Liposcelididae). Bull. Entomol. Res. 96: 523-530. PMid:17092363   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Oliveira RS, Nunes FMF, Campos APS, Vasconcelos SM, et al. (2004). Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini) based on RAPD markers. Genet. Mol. Biol. 27: 181-186. http://dx.doi.org/10.1590/S1415-47572004000200009   Parani M, Singh KN, Rangasamy S and Ramalingam RS (1997). Identification of Sesamum alatum x Sesamum indicum hybrid using protein, isozyme and RAPD markers. Indian J. Genet. Plant Breed. 57: 381-388.   Pérez T, Albornoz J and Dominguez A (1998). An evaluation of RAPD fragment reproducibility and nature. Mol. Ecol. 7: 1347-1357. http://dx.doi.org/10.1046/j.1365-294x.1998.00484.x PMid:9787445   Semagn K (2002). Genetic relationships among ten encoded types as revealed by a combination of morphological, RAPD and AFLP markers. Hereditas 137: 149-156. http://dx.doi.org/10.1034/j.1601-5223.2002.01600.x PMid:12627842   Skroch P and Nienhuis J (1995). Impact of scoring error and reproducibility RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet. 91: 1086-1091. http://dx.doi.org/10.1007/BF00223923   Smith RJ, Hines A, Richmond S, Merrick M, et al. (2000). Altitudinal variation in body size and population density of Nicrophorus investigator (Coleoptera: Silphidae). Environ. Entomol. 29: 290-298. http://dx.doi.org/10.1603/0046-225X(2000)029[0290:AVIBSA]2.0.CO;2   Tauber JM, Tauber AC and Masaki S (1986). Insect Adaptation to Environmental Change. In: Seasonal Adaptations of Insects (Tauber JM, Tauber AC and Masaki S, eds.). Oxford University Press, New York, 7-37.   Waldschmidt AM, Barros EG and Campos LAO (2000). A molecular marker distinguishes the subspecies Melipona quadrifasciata quadrifasciata and Melipona quadrifasciata anthidioides (Hymenoptera: Apidae, Meliponinae). Genet. Mol. Biol. 23: 609-611. http://dx.doi.org/10.1590/S1415-47572000000300019   Weising K, Nybom H, Wolff K and Meyer W (1995). DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Ranton.