Publications

Found 4 results
Filters: Author is X.Y. Zhou  [Clear All Filters]
2016
S. W. Chen, Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., Lin, L. B., Chen, S. W., Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., and Lin, L. B., Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing, vol. 15, p. -, 2016.
S. W. Chen, Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., Lin, L. B., Chen, S. W., Liu, T., Gao, Y., Zhang, C., Peng, S. D., Bai, M. B., Li, S. J., Xu, L., Zhou, X. Y., and Lin, L. B., Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing, vol. 15, p. -, 2016.
M. Xin, Wang, L., Ma, B. H., Qin, Z. W., and Zhou, X. Y., Genetic analysis of molecular markers for propamocarb residue in Cucumis sativus using quantitative trait locus mapping, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch funded by the National Natural Science Foundation of China (#31272158 and #31401863), the Doctoral Starting-up Foundation of Northeast Agricultural University (#2012RCB25), the Open Project of Heilongjiang Provincial Key University Laboratory of Cold Area Vegetable Biology (#CVB2012-001), the Young Talents’ Project of Northeast Agricultural University (#14QC12), the Natural Science Foundation of Heilongjiang Province (#QC2012C122), and the Certificate of China Postdoctoral Science Foundation (#2013M540265) and Certificate of Heilongjiang Postdoctoral Fund (#LBH-Z12037). REFERENCESAbraham J, Shanker A, Silambarasan S, et al (2013). Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol. Lett. Appl. Microbiol. 57: 510-516. http://dx.doi.org/10.1111/lam.12141 Achouch A, et al (2002). Simulation studies for comparing genetics models with additive-dominance-maternal effects and GE interaction effects. J. Biomathemat. 17: 208-214. Akoto O, Gavor S, Appah MK, Apau J, et al (2015). Estimation of human health risk associated with the consumption of pesticide-contaminated vegetables from Kumasi, Ghana. Environ. Monit. Assess. 187: 244. http://dx.doi.org/10.1007/s10661-015-4471-0 Brazier-Hicks M, Evans KM, Cunningham OD, Hodgson DRW, et al (2008). Catabolism of glutathione conjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenclorim. J. Biol. Chem. 283: 21102-21112. http://dx.doi.org/10.1074/jbc.M801998200 Chishti Z, Hussain S, Arshad KR, Khalid A, et al (2013). Microbial degradation of chlorpyrifos in liquid media and soil. J. Environ. Manage. 114: 372-380. http://dx.doi.org/10.1016/j.jenvman.2012.10.032 González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Simal-Gándara J, et al (2008). Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants. J. Chromatogr. A 1196-1197: 100-109. http://dx.doi.org/10.1016/j.chroma.2008.02.087 Griffing B, et al (1955). Concept of general and specific combining ability in relation to diallel cross. Aust. J. Biol. Sci. 9: 463-493. http://dx.doi.org/10.1071/BI9560463 Huang S, Li R, Zhang Z, Li L, et al (2009). The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41: 1275-1281. http://dx.doi.org/10.1038/ng.475 Li Y, Yang L, Pathak M, Li D, et al (2011). Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor. Appl. Genet. 123: 973-983. http://dx.doi.org/10.1007/s00122-011-1640-6 Liang Y, Wang W, Shen Y, Liu Y, et al (2012). Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chem. 133: 636-640. http://dx.doi.org/10.1016/j.foodchem.2012.01.016 Liu FF, Qin ZW, Zhou XY, et al (2010). Screening germplasm resources of cucumber plant with low pesticide residue content. J. Northeast Agric. Univ. 41: 32-36. Manikrao G, Mohapatra S, et al (2015). Persistence and dissipation of fluopicolide and propamocarb on cabbage and soil under semi-arid climatic conditions. Int. J. Environ. Anal. Chem. 96: 1-19. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, et al (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37: 1362-1375. http://dx.doi.org/10.1016/j.envint.2011.06.003 Meng JJ, Qin ZW, Zhou XY, Xin M, et al (2016). An ATP-binding cassette transporter gene from Cucumis sativus L., CsABC19, is involved in propamocarb stress in Arabidopsis thaliana. Plant Mol. Biol. Report. 34: 947. http://dx.doi.org/10.1007/s11105-016-0976-0 Miao H, Zhang SP, Wang XW, Zhang ZH, et al (2011). A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182: 167-176. http://dx.doi.org/10.1007/s10681-011-0410-5 Miao H, Gu XF, Zhang SP, Zhang ZH, et al (2012). Detection of quantitative trait loci for plant height in different environments using an RIL population in cucumber. Zhongguo Nong Ye Ke Xue 45: 4552-4560. Michelmore RW, Paran I, Kesseli RV, et al (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 Ngowi AV, Mbise TJ, Ijani AS, London L, et al (2007). Pesticides use by smallholder farmers in vegetable production in Northern Tanzania. Crop Prot. 26: 1617-1624. http://dx.doi.org/10.1016/j.cropro.2007.01.008 Ojiambo PS, Paul PA, Holmes GJ, et al (2010). A quantitative review of fungicide efficacy for managing downy mildew in cucurbits. Phytopathology 100: 1066-1076. http://dx.doi.org/10.1094/PHYTO-12-09-0348 Qi J, Liu X, Shen D, Miao H, et al (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45: 1510-1515. http://dx.doi.org/10.1038/ng.2801 Ren Y, Zhang Z, Liu J, Staub JE, et al (2009). An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4: e5795. http://dx.doi.org/10.1371/journal.pone.0005795 Shiota N, Inui H, Ohkawa H, et al (1996). Metabolism of the herbicide chlortoluron in transgenic tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 and yeast NADPH-cytochrome P450 oxidoreductase. Pestic. Biochem. Physiol. 54: 190-198. http://dx.doi.org/10.1006/pest.1996.0023 Swarnam TP, Velmurugan A, et al (2013). Pesticide residues in vegetable samples from the Andaman Islands, India. Environ. Monit. Assess. 185: 6119-6127. http://dx.doi.org/10.1007/s10661-012-3012-3 Takagi H, Abe A, Yoshida K, Kosugi S, et al (2013). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74: 174-183. http://dx.doi.org/10.1111/tpj.12105 Wang HJ, Wu Y, Gu W, Sun XD, et al (2006). Extraction of DNA from cucumber by improved CTAB method. Heilongjiang Agric. Sci 5: 124-125. Wang J, Jiang Y, Chen S, Xia X, et al (2010). The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere 79: 958-965. http://dx.doi.org/10.1016/j.chemosphere.2010.02.020 Weng Y, Colle M, Wang Y, Yang L, et al (2015). QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor. Appl. Genet. 128: 1747-1763. http://dx.doi.org/10.1007/s00122-015-2544-7 Weng YQ, et al (2010). Genetic diversity among Cucumis metuliferus populations revealed by cucumber microsatellites. HortScience 45: 214-219. Wu P, Qin Z, Zhao W, Zhou X, et al (2013a). Transcriptome analysis reveals differentially expressed genes associated with propamocarb response in cucumber (Cucumis sativus L.) fruit. Acta Physiol. Plant. 35: 2393-2406. http://dx.doi.org/10.1007/s11738-013-1274-1 Wu P, Qin Z, Wu T, Zhou X, et al (2013b). Proteomic analysis of cucumber defense responses induced by propamocarb. J. Integr. Agric. 12: 2022-2035. http://dx.doi.org/10.1016/S2095-3119(13)60370-6 Yang J and Cao HF (2012). Determination of 14 organophosphorus in cucumber of green vegetables fruits by using gas chromatography North Hortic. 12: 25-28. Yuan XJ, Pan JS, Cai R, Liu LZ, et al (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164: 473-491. http://dx.doi.org/10.1007/s10681-008-9722-5 Zhang SP, Miao H, Gu XF, Yang YH, et al (2010a). Genetic mapping of the scab resistance gene Ccu in cucumber. J. Am. Soc. Hortic. Sci. 135: 53-58. Zhang SP, Liu MM, Mian H, Zhang SQ, et al (2011). QTL mapping of resistance genes to powdery mildew in cucumber (Cucumis sativus L.). Zhongguo Nong Ye Ke Xue 44: 3584-3593. Zhang W, He H, Guan Y, Du H, et al (2010b). Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor. Appl. Genet. 120: 645-654. http://dx.doi.org/10.1007/s00122-009-1182-3