Found 7 results
Filters: Author is C. Pungartnik  [Clear All Filters]
M. Brendel, Marisco, G., Ganda, I., Wolter, R., and Pungartnik, C., DNA repair mutant pso2 of Saccharomyces cerevisiae is sensitive to intracellular acetaldehyde accumulated by disulfiram-mediated inhibition of acetaldehyde dehydrogenase, vol. 9, pp. 48-57, 2010.
Ausubel F, Brent R, Kingston RE and More DD (1996). Protocols in Molecular Biology. 3rd edn. (Suppl 33). Wiley, USA.   Berlin RG (1989). Disulfiram hepatotoxicity: a consideration of this mechanism and clinical spectrum. Alcohol Alcohol. 24: 241-246. PMid:2667530   Bertram B, Frei E, Scherf HR, Schuhmacher J, et al. (1985). Influence of a prolonged treatment with disulfiram and D(-) penicillamine on nitrosodiethylamine-induced biological and biochemical effects in rats. I. Investigations on the drug metabolizing system. J. Cancer Res. Clin. Oncol. 109: 9-15. PMid:3972888   Boffetta P and Hashibe M (2006). Alcohol and cancer. Lancet Oncol. 7: 149-156.   Brendel M and Henriques JA (2001). The pso mutants of Saccharomyces cerevisiae comprise two groups: one deficient in DNA repair and another with altered mutagen metabolism. Mutat. Res. 489: 79-96.   Brendel M, Bonatto D, Strauss M, Revers LF, et al. (2003). Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat. Res. 544: 179-193. PMid:14644320   Cox BS and Parry JM (1968). The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat. Res. 6: 37-55.   Dall'Acqua F, Marciani S, Vedaldi D and Rodighiero G (1974). Skin photosensitization and cross-linkings formation in native DNA by furocoumarins. Z. Naturforsch. C. 29C: 635-636. PMid:4278271   Dronkert ML and Kanaar R (2001). Repair of DNA interstrand cross-links. Mutat. Res. 486: 217-247.   Fleer R and Brendel M (1979). Formation and fate of cross-links induced by polyfunctional anticancer drugs in yeast. Mol. Gen. Genet. 176: 41-52. PMid:396449   Gibbs PE, McGregor WG, Maher VM, Nisson P, et al. (1998). A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc. Natl. Acad. Sci. U. S. A. 95: 6876-6880. PMid:9618506 PMCid:22668   Gocke E and Manney TR (1979). Expression of radiation-induced mutations at the arginine permease (CAN1) locus in Saccharomyces cerevisiae. Genetics 91: 53-66. PMid:372046 PMCid:1213931   Heidenreich E, Novotny R, Kneidinger B, Holzmann V, et al. (2003). Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. 22: 2274-2283. PMid:12727893 PMCid:156075   Henriques JA and Moustacchi E (1980). Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95: 273-288. PMid:7009316 PMCid:1214226   Henriques JA, Brozmanova J and Brendel M (1997). Role of PSO genes in the repair of photoinduced interstrand cross-links and photooxidative damage in the DNA of the yeast Saccharomyces cerevisiae. J. Photochem. Photobiol. B 39: 185-196.   Jachymczyk WJ, von Borstel RC, Mowat MR and Hastings PJ (1981). Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182: 196-205. PMid:7026973   Khan NA, Brendel M and Haynes RH (1970). Supersensitive double mutants in yeast. Mol. Gen. Genet. 107: 376-378. PMid:5519983   Lawrence CW (2002). Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair 1: 425-435.   Lehoczky P, McHugh PJ and Chovanec M (2007). DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 31: 109-133. PMid:17096663   Lemontt JF (1971). Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68: 21-33. PMid:17248528 PMCid:1212581   Liu X, Lao Y, Yang IY, Hecht SS, et al. (2006). Replication-coupled repair of crotonaldehyde/acetaldehyde-induced guanine-guanine interstrand cross-links and their mutagenicity. Biochemistry 45: 12898-12905. PMid:17042508 PMCid:2518849   Matsuda T, Kawanishi M, Yagi T, Matsui S, et al. (1998). Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Res. 26: 1769-1774. PMid:9512551 PMCid:147446   Matsuda T, Yabushita H, Kanaly RA, Shibutani S, et al. (2006). Increased DNA damage in ALDH2-deficient alcoholics. Chem. Res. Toxicol. 19: 1374-1378. PMid:17040107   Mechilli M, Schinoppi A, Kobos K, Natarajan AT, et al. (2008). DNA repair deficiency and acetaldehyde-induced chromosomal alterations in CHO cells. Mutagenesis 23: 51-56. PMid:17989147   Noori P and Hou SM (2001). Mutational spectrum induced by acetaldehyde in the HPRT gene of human T lymphocytes resembles that in the p53 gene of esophageal cancers. Carcinogenesis 22: 1825-1830. PMid:11698345   O'Hanlon LH (2005). Studies seek molecular clues on alcohol's role in cancer. J. Natl. Cancer Inst. 97: 1563-1564. PMid:16264173   Obe G and Anderson D (1987). International Commission for Protection against Environmental Mutagens and Carcinogens. ICPEMC Working Paper No. 15/1. Genetic effects of ethanol. Mutat. Res. 186: 177-200.   Paget V, Lechevrel M and Sichel F (2008). Acetaldehyde-induced mutational pattern in the tumour suppressor gene TP53 analysed by use of a functional assay, the FASAY (functional analysis of separated alleles in yeast). Mutat. Res. 652: 12-19. PMid:18242117   Poschl G and Seitz HK (2004). Alcohol and cancer. Alcohol Alcohol. 39: 155-165. PMid:15082451   Pungartnik C, Picada J, Brendel M and Henriques JA (2002). Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress. Genet. Mol. Res. 1: 79-89. PMid:14963816   Rahn RO and Patrick MH (1976). Photochemistry of DNA: Secondary Structure, Photosensitization, Base Substitution, and Exogenous Molecules. In: Photochemistry and Photobiology of Nucleic Acids. Vol. II Biology (Wang SY, ed.). Academic Press, New York, 97-145.   Ristow H and Obe G (1978). Acetaldehyde induces cross-links in DNA and causes sister-chromatid exchanges in human cells. Mutat. Res. 58: 115-119.   Rosman AS, Waraich A, Baraona E and Lieber CS (2000). Disulfiram treatment increases plasma and red blood cell acetaldehyde in abstinent alcoholics. Alcohol Clin. Exp. Res. 24: 958-964. PMid:10923997   Rossi R, Giustarini D, Dalle-Donne I and Milzani A (2006). Protein S-glutathionylation and platelet anti-aggregating activity of disulfiram. Biochem. Pharmacol. 72: 608-615. PMid:16815310   Ruhland A, Haase E, Siede W and Brendel M (1981). Isolation of yeast mutants sensitive to the bifunctional alkylating agent nitrogen mustard. Mol. Gen. Genet. 181: 346-351. PMid:7017347   Sambrook J, Maniatis T and Fritsch EF (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Siede W and Friedberg EC (1992). Regulation of the yeast RAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival. Mol. Gen. Genet. 232: 247-256. PMid:1557031   Suh JJ, Pettinati HM, Kampman KM and O'Brien CP (2006). The status of disulfiram: a half of a century later. J. Clin. Psychopharmacol. 26: 290-302. PMid:16702894   Wang M, McIntee EJ, Cheng G, Shi Y, et al. (2000). Identification of DNA adducts of acetaldehyde. Chem. Res. Toxicol. 13: 1149-1157. PMid:11087437   Wolter R, Siede W and Brendel M (1996). Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links. Mol. Gen. Genet. 250: 162-168. PMid:8628215