Publications

Found 2 results
Filters: Author is T.L. Wu  [Clear All Filters]
2016
L. M. Yao, Jiang, Y. N., Lu, X. X., Wang, B., Zhou, P., and Wu, T. L., Overexpression of a glycine-rich protein gene in Lablab purpureus improves abiotic stress tolerance, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Ministry of Agriculture “948” Project (#2011-G (5)-16), the Natural Science Foundation of Shanghai (#15ZR1422900) and the Shanghai Municipal Science and Technology Commission Innovation Program (#14391900100). REFERENCESAmey RC, Schleicher T, Slinn J, Lewis M, et al (2008). Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur. J. Plant Pathol. 122: 41-55. http://dx.doi.org/10.1007/s10658-008-9313-2 Clough SJ, Bent AF, et al (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x D’Souza MR, Devaraj VR, et al (2010). Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol. Plant. 32: 341-353. http://dx.doi.org/10.1007/s11738-009-0412-2 Du H, Wu N, Fu J, Wang S, et al (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63: 6467-6480. http://dx.doi.org/10.1093/jxb/ers300 Du H, Wu N, Chang Y, Li X, et al (2013). Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol. Biol. 83: 475-488. http://dx.doi.org/10.1007/s11103-013-0103-7 Hammond JP, Bennett MJ, Bowen HC, Broadley MR, et al (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132: 578-596. http://dx.doi.org/10.1104/pp.103.020941 Kim JY, Kim WY, Kwak KJ, Oh SH, et al (2010a). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61: 2317-2325. http://dx.doi.org/10.1093/jxb/erq058 Kim JY, Kim WY, Kwak KJ, Oh SH, et al (2010b). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ. 33: 759-768. Kim MK, Jung HJ, Kim DH, Kang H, et al (2012). Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. Physiol. Plant. 146: 297-307. http://dx.doi.org/10.1111/j.1399-3054.2012.01628.x Kim YO, Pan S, Jung CH, Kang H, et al (2007). A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol. 48: 1170-1181. http://dx.doi.org/10.1093/pcp/pcm087 Long R, Yang Q, Kang J, Zhang T, et al (2013). Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis. Plant Cell Rep. 32: 1289-1298. http://dx.doi.org/10.1007/s00299-013-1443-0 Maass BL, Jamnadass RH, Hanson J, Pengelly BC, et al (2005). Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genet. Resour. Crop Evol. 52: 683-695. http://dx.doi.org/10.1007/s10722-003-6019-3 Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, et al (2009). AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. Planta 230: 253-265. http://dx.doi.org/10.1007/s00425-009-0940-4 Mousavi A, Hotta Y, et al (2005). Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. 120: 169-174. http://dx.doi.org/10.1385/ABAB:120:3:169 Murphy AM, Colucci PE, et al (1999). A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livest. Res. Rural Dev. 11: 2. Ortega-Amaro MA, Rodríguez-Hernández AA, Rodríguez-Kessler M, Hernández-Lucero E, et al (2015). Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front. Plant Sci. 5: 782. http://dx.doi.org/10.3389/fpls.2014.00782 Ringli C, Keller B, Ryser U, et al (2001). Glycine-rich proteins as structural components of plant cell walls. Cell. Mol. Life Sci. 58: 1430-1441. http://dx.doi.org/10.1007/PL00000786 Shi H, Chen L, Ye T, Liu X, et al (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 82: 209-217. http://dx.doi.org/10.1016/j.plaphy.2014.06.008 Streitner C, Danisman S, Wehrle F, Schöning JC, et al (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J. 56: 239-250. http://dx.doi.org/10.1111/j.1365-313X.2008.03591.x Tamura K, Dudley J, Nei M, Kumar S, et al (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 Yang DH, Kwak KJ, Kim MK, Park SJ, et al (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci. 214: 106-112. http://dx.doi.org/10.1016/j.plantsci.2013.10.006 Yao LM, Wang B, Cheng LJ, Wu TL, et al (2013). Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8: e58108. http://dx.doi.org/10.1371/journal.pone.0058108 Yuan J, Yang R, Wu TL, et al (2009). Bayesian mapping QTL for fruit and growth phenological traits in Lablab purpureus (L.) Sweet. Afr. J. Biotechnol. 8: 167-175.