Proteome
Analysis of protein profile of tomato root infected with Fusarium oxysporum f. sp lycopersici.
Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation
Magnaporthe oryzae is an important model system in studies of plant pathogenic fungi, and nitrogen is a key nutrient source affecting microbial growth and development. In order to understand how nitrogen stress causes changes in mycelial proteins, we analyzed differentially expressed mycelial proteins from the M. oryzae virulent strain CH-63 using two-dimensional electrophoresis and mass spectrometry in complete medium or under nitrogen starvation conditions.
Proteome analysis of tobacco leaves reveals dynamic changes in protein expression among different cultivation areas
The leaves of tobacco plants were used to analyze differences in protein content of tobacco grown in the four main flue-cured tobacco-producing areas of Sichuan Province, China. An improved protein extraction method, isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis two-dimensional gel electrophoretic separation, was used to extract and separate total protein from tobacco leaves. Proteomic maps with relatively high resolution and repeatability were produced.
Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana)
The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology.