Drought tolerance
Bradyrhizobium spp. as attenuators of water deficit stress in runner peanut genotypes based on physiological and gene expression responses
Selection of sorghum for drought tolerance in a semiarid environment
Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum
Cotton is one of the most important natural fiber crops in the world. Its growth and yield is greatly limited by drought. A quantitative trait locus (QTL) analysis was therefore conducted to investigate the genetic basis of drought tolerance in cotton (Gossypium spp) using 188 F2:3 lines developed from an inter-specific cross between a wild cotton species, G. tomentosum, and an upland cotton, G. hirsutum (CRI-12).
Evaluation of grain yield in sorghum hybrids under water stress
Sorghum grain yield can be significantly affected by climatic changes, especially drought and high temperature. The purpose of this study was to evaluate hybrids of grain sorghum grown under normal irrigation conditions or water stress in order to select those likely to be more tolerant of drought. Forty-nine hybrids were grown in a randomized block design experiment, with three replications. The plots consisted of four rows of 5 m length. Grain yield, weight of 1000 grains, harvest index, days to flowering, and plant height were measured.
Selection of cowpea progenies with enhanced drought-tolerance traits using principal component analysis
Vigna unguiculata (L.) Walp (cowpea) is a food crop with high nutritional value that is cultivated throughout tropical and subtropical regions of the world. The main constraint on high productivity of cowpea is water deficit, caused by the long periods of drought that occur in these regions. The aim of the present study was to select elite cowpea genotypes with enhanced drought tolerance, by applying principal component analysis to 219 first-cycle progenies obtained in a recurrent selection program.
Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum
Gossypium tomentosum is a wild allotetraploid species with the (AD)5 genome. It is characterized by many useful traits including finer fiber fineness, drought tolerance, and Fusarium and Verticillium resistance. We constructed the first bacterial artificial chromosome library for Gossypium tomentosum. With high quality and broad coverage, this library includes 200,832 clones, with an average insert size of about 122 kb and fewer than 3% empty clones.
Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.)
The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants’ adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment.