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ABSTRACT: 

The exponential rise in unstructured medical text volume in recent years has led to a pressing need for sophisticated topic 

modeling methods that can capture temporal dynamics and semantic richness. This study suggests a brand-new hybrid framework 

called DTM-RNNLSTM, which combines the sequential learning powers of Recurrent Neural Networks (RNN) and Long Short -

Term Memory (LSTM) networks with Dynamic Topic Modeling (DTM). The model integrates ideas from the Unified Medical 

Language System (UMLS) to improve semantic relevance, making it possible to identify issues with medical significance. The 

MedMentions dataset, a sizable corpus annotated with UMLS concepts, is used to assess the efficacy of the suggested model.   

Three robust baseline models are compared: the Dynamic Topic Model (DTM), Gibbs Sampling Dirichlet Multinomial Mixture 

(GSDMM), and Non-negative Matrix Factorization (NMF). Coherence, Perplexity, Precision, Recall, F1-Score, and Accuracy are 

evaluation measures that address both statistical and semantic performance factors. The findings show that DTM-RNNLSTM 

outperforms conventional methods in capturing changing topic patterns and greatly enhances semantic coherence. 

 

Keywords:  Coherence and Perplexity, Dynamic Topic Model (DTM),  Long Short-Term Memory (LSTM), Medical Natural 

Language Processing (NLP), MedMentions Dataset, Recurrent Neural Networks (RNN),  Semantic Integration, Topic Modeling, 

Unified Medical Language System (UMLS).

 
INTRODUCTION 
The amount of textual data being generated in the medical industry is increasing at an unprecedented rate. A large and 

continuously expanding collection of unstructured medical texts is facilitated by Electronic Health Records (EHRs), clinical trial 

reports, scientific research papers, and online health forums [1]. The digital transformation of healthcare systems and the growing 

focus on data-driven medical research have further accelerated this surge. Advanced natural language processing (NLP) 

techniques are crucial because of the unstructured nature of this data, which makes it difficult to extract insights that may be put to 

use [2]. In order to organize, summarize, and uncover hidden patterns in massive text corpora, topic modeling has become an 

essential tool. Topic models help with a number of medical applications, including public health monitoring, clinical decision 

assistance, illness trend analysis, and literature review automation [3]. These models improve knowledge discovery, informati on 

retrieval, and evidence-based medical research by offering a probabilistic framework for identifying hidden themes in text data. 

 

Traditional topic modeling techniques, such Latent Dirichlet Allocation (LDA) [4], Non-negative Matrix Factorization (NMF) [5], 

and even Dynamic Topic Models (DTM) [6], are useful, but they face two major obstacles in the medical field: temporal 

dynamics and semantic understanding. First, because these models are mainly statistical in nature, they frequently ignore the  

domain-specific semantics present in biological texts, producing subjects that are ambiguous or clinically irrelevant. Second, 

DTM does not adequately simulate long-term dependencies or context preservation across changing document sequences, even 

while it does capture temporal changes in subjects. Furthermore, these approaches overlook outside medical expertise, such the 

Unified Medical Language System (UMLS) [7], which could greatly improve the topic's relevance and interpretability. This 

highlights the necessity for a hybrid modeling approach that integrates deep sequential learning, domain-specific semantic 

enrichment, and temporal awareness. The U.S. National Library of Medicine created the Unified Medical Language System 

(UMLS), a comprehensive biological vocabulary collection that incorporates more than 200 medical classifications and 

terminologies. It enables uniform understanding of medical language by offering a standardized mapping of concepts and 

synonymous phrases across several healthcare areas. Because it facilitates entity linkage, concept disambiguation, and semant ic 
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normalization, UMLS is very useful for natural language processing (NLP) applications. A key component of precise topic 

modeling in the healthcare industry, UMLS improves the semantic interpretability of medical data by bringing unstructured tex t 

into line with structured medical ideas [8]. 

 

 Although current topic modeling techniques have shown useful in identifying themes in medical corpora, they frequently fall 

short in their ability to accurately represent temporal transitions and integrate semantic understanding. Conventional models 

cannot capture changing topics in longitudinal medical datasets well, and they are not able to leverage domain-specific 

information such as UMLS. Furthermore, the sequential character of medical narratives, such patient histories or time-stamped 

articles, is difficult for current techniques to depict. This disparity limits the themes' applicability in clinical or research settings by 

impeding the development of cogent and medically significant topics. 

 

This study suggests a sophisticated hybrid model and an all-encompassing assessment approach to improve subject modeling in 

medical literature in order to overcome these issues. Dynamic Topic Models (DTM) [9] and the sequential learning power of 

Recurrent Neural Networks (RNN) [10] and Long Short-Term Memory (LSTM) [11] networks are combined in this innovative 

framework. Through this fusion, the model is able to preserve context and long-range dependencies in the text while capturing the 

temporal evolution of the topic. The model's semantic awareness is improved with the use of UMLS concept annotations during 

preprocessing. This enables it to produce themes that are interpretable and medically relevant, matching clinical concepts and 

terminology from the real world. Three well-known topic modeling approaches are used to compare the suggested model: 

Dynamic Topic Model (DTM) [13], Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), and Non-negative Matrix 

Factorization (NMF) [12]. Metrics like Coherence, Perplexity, Precision, Recall, F1-Score, and Accuracy can be used to assess the 

statistical and semantic performance of the suggested approach thanks to these baselines. By integrating deep learning, temporal 

modeling, and semantic integration, this study offers a fresh approach to medical topic modeling with the goal of improving t he 

caliber and usefulness of knowledge extraction in biomedical text mining. 

 

This paper's remaining sections are arranged as follows: The related work is covered in Section II, with an emphasis on current 

methods for temporal sequence learning and dynamic topic modeling in clinical or medical text analysis. A Dynamic Topic Model  

(DTM) layer, a Recurrent Neural Network/Long Short-Term Memory (RNN/LSTM) layer for capturing temporal coherence, and 

a fusion layer intended to maximize topic coherence are all integrated in the suggested approach, DTM-RNNLSTM, which is 

described in Section III. The application of UMLS-based preprocessing for precise clinical concept annotation is also covered in 

this section. The data preprocessing procedures used to get the input ready for model training are described in Section IV. The 

setup and thorough performance analysis utilizing coherence scores, perplexity, and common classification metrics like accuracy, 

precision, recall, and F1-score are presented in Section V along with the experimental findings and discussion. The work is finally 

concluded in Section VI, which also suggests future research areas. 

RELATED WORK 
 For the purpose of organizing and comprehending vast amounts of unstructured biomedical text, topic modeling has become a 

crucial tool. Conventional models like Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003) [14] and Non-negative 

Matrix Factorization (NMF) (Lee & Seung, 2001) [15] have been used extensively in biomedical literature to uncover latent 

semantic structures, but they frequently fail to capture the particular nuances of clinical and biomedical language, such as 

synonymy and domain-specific terminology. To overcome the shortcomings of static models, Dynamic Topic Models (DTM) 

were introduced to capture topic evolution over time (Blei & Lafferty, 2006) [16]. DTM has been used in the healthcare indust ry 

to research topics, disease prevalence, and patient record evolution. 

 

 DTM is useful for simulating temporal changes, but it is unable to identify the more intricate sequential patterns and contextual 

connections found in longitudinal data. In order to improve text representation, recent developments in deep learning have brought 

models such as Neural Variational Document Models (NVDM) and hybrid models that combine Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) networks (Miao, Yu, & Blunsom, 2016) [17]. These models do better than 

traditional methods at capturing document-level dependencies and context. Due to a lack of semantic interaction with outside 

medical information sources, their use in medical subject modeling is still restricted. By connecting unstructured text to organized 

biomedical concepts, the Unified Medical Language System (UMLS) has been utilized to improve medical natural language 

processing applications.  Research has demonstrated that UMLS-based semantic annotation improves text categorization, entity 

recognition, and concept normalization (Limsopatham & Collier, 2016; Wang et al., 2018). [18] [19]. UMLS incorporation into 

subject modeling frameworks remains understudied despite its demonstrated advantages. Proposed by Yin and Wang (2014) [20], 

the Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM) model has proven to perform better when processing brief texts 

like clinical notes or medical papers. GSDMM is useful for grouping brief segments together, but it is unable to incorporate 

domain-specific semantics or represent temporal evolution. Each of the current subject modeling approaches has special 

advantages. RNN/LSTM for sequential learning, UMLS for semantic enrichment, and DTM for temporal modeling. To satisfy the 

requirements of dynamic, semantically complex medical datasets, no existing model effectively integrates these features. By 

putting up a hybrid DTM-RNNLSTM architecture combined with UMLS for improved topic modeling in biomedical texts, this 

study seeks to close this gap. 
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Proposed Methodology: DTM-RNNLSTM 
 The hybrid architecture of the suggested DTM-RNNLSTM model was created to get beyond the drawbacks of conventional topic 

modeling in medical texts. This is accomplished by combining the context-preserving and sequence-modeling power of Recurrent 

Neural Networks (RNN) and Long Short-Term Memory (LSTM) units with the temporal topic evolution capabilities of Dynamic 

Topic Models (DTM). Through UMLS-based preprocessing, it also improves semantic understanding, allowing the model to 

provide themes with clinical significance. The following elements make up the DTM-RNNLSTM architecture: 

Dynamic Topic Model (DTM) Layer 

Dynamic Topic Models (DTMs), extend Latent Dirichlet Allocation (LDA) to capture temporal topic evolution. In this model, the  

topics are allowed to vary over discrete time slices, making it suitable for modeling corpora where content changes over time—

such as medical literature or clinical notes. DTM is employed as the first component to model topic evolution over time. The input 

corpus is split into time-stamped segments (e.g., by publication year or patient admission date). For each time slice, DTM learns a 

set of latent topics and their distribution across documents, capturing how these topics evolve temporally. 

 

Step 1: Temporal Segmentation of the Corpus 

Let the entire corpus D be divided into T time slices: 𝐷 = {𝐷(1), 𝐷(2),… , 𝐷(𝑇)} 
Each D(t) represents a sub-corpus of documents corresponding to time slice t (e.g., a publication year). 

 

Step 2: Generative Process of DTM 

For each time slice t∈{1,…,T}: 

1. For each topic k∈{1,…,K}: 

o The topic-word distribution βk
(t) is drawn from a Gaussian random walk in the natural parameter space (log-space): 

𝜂
𝑘
(𝑡)~𝑁(𝜂𝑘

(𝑡−1)
, 𝜎2𝐼), 𝑓𝑜𝑟 𝑡 > 1 

𝛽
𝑘

(𝑡)
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜂𝑘

(𝑡)) 

o This allows each topic’s word distribution to evolve smoothly over time. 
2. For each document d∈D(t): 

o Draw document-topic distribution: 𝜃𝑑~𝐷𝑖𝑟(𝛼) 
o For each word wdnwdn in document d: 

▪ Draw a topic assignment: 𝑧𝑑𝑛~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑑 ) 

▪ Draw a word: 𝑤𝑑𝑛~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛽𝑧𝑑𝑛

(𝑡)
) 

Where, ηk
(t)- Natural parameter for topic k at time t (logit of β), βk

(t)- Word distribution for topic k at time t, θd -Topic distribution 

for document d, Zdn -Topic assignment for the n-th word in document d. wdn - The n-th word in document d. 

 

Inference and Learning 

DTM uses Variational Inference or Kalman Filtering with Expectation-Maximization (EM) to estimate: 

● The topic trajectories {𝜂𝑘
(𝑡)}𝑘=1

𝐾  
● Document-topic distributions θd 
● Per-word topic assignments zdn 

In some implementations, Variational Kalman Filtering is employed for efficient time series inference. The overall goal is to  

maximize the Evidence Lower Bound (ELBO) across time slices: 

𝐿 = ∑

𝑇

𝑡=1

𝐸𝑞(𝜃,𝑧)[𝑙𝑜𝑔 𝑙𝑜𝑔 𝑃(𝐷(𝑡)|𝜃, 𝑧, 𝛽(𝑡))] − 𝐾𝐿[𝑞(𝜃, 𝑧)||𝑃(𝜃, 𝑧)]  

Where, 𝑃(𝛽(𝑡)|𝛽(𝑡−1)acts as a temporal prior, KL is the Kullback–Leibler divergence between variational and true posteriors. This 

process ensures that topic distributions are temporally coherent, with smooth transitions between adjacent time slices —making 

DTM a powerful foundation for sequential modeling with RNN-LSTM layers. 



4 
 

Genetics and Molecular Research 25 (1): gmr24124 

 

 

RNN/LSTM Layer for Temporal Coherence 

The purpose of integrating the RNN/LSTM layer with the DTM is to model long-term dependencies and contextual transitions 

across document-topic distributions over time. This is especially important in medical texts, where topics may shift slowly, be 

influenced by previous contexts, or appear intermittently. 

 

Step 1: Preparing Input for RNN/LSTM  

From the DTM component, it obtains document-topic distributions 𝜃𝑑
(𝑡)

∈ 𝑅𝐾  for each document d in time slice t, where K is the 

number of topics. 

It aggregates these distributions into time series of topic vectors per document or per aggregated entity (e.g., disease class, concept 

cluster): 

𝛩(𝑑)
= [𝜃𝑑

(1), 𝜃𝑑
(2), … , 𝜃𝑑

(𝑇)] ∈ 𝑅𝑇𝑥𝐾 

 This matrix becomes the input sequence for the RNN/LSTM layer. 

 

Step 2: Recurrent Modeling with LSTM 

LSTM (Long Short-Term Memory) networks are designed to capture long-range dependencies in sequential data. Unlike vanilla 

RNNs, LSTMs mitigate the vanishing/exploding gradient problem through their gating mechanisms. Let’s define the input to the 

LSTM at time t as: 

𝑥𝑡 = 𝜃𝑑
(𝑡) 

The LSTM unit computes hidden states ℎ𝑡 ∈ 𝑅𝐻 and cell states 𝑐𝑡 ∈ 𝑅𝐻using the following equations:  

LSTM works as follow, 

Forget Gate: Computes a sigmoid activation over the current input and previous hidden state, outputting values between 0 

and 1 to decide which parts of the previous memory cell Ct-1 should be forgotten. 

𝒇𝒕 = 𝝈(𝑾𝒇. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇) 

When processing biomedical texts from MedMentions, the forget gate learns to selectively remove outdated or irrelevant 

medical concepts from memory. For example, if earlier tokens discussed "diabetes" but the context shifts to 

"cardiovascular disease," the forget gate helps discard diabetes-related memory.  

Input Gate: Computes another sigmoid to decide which new values will be updated in the memory cell. 

𝒊𝒕 = 𝝈(𝑾𝒊. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊) 

This gate controls the addition of new UMLS-based concepts into the model’s memory. When a new clinical term like 

"angioplasty" appears, the input gate decides how strongly this new information should influence the next topic state. 

Candidate Memory (Cell Candidate): Computes a tanh-activated vector of new candidate values Ct that could be added to the 

state. 

𝑪𝒕 = 𝝈(𝑾𝑪. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝑪) 

Generates potential updates to the LSTM’s memory, representing possible new biomedical concepts or topic shifts (e.g., 

proposing a new cluster around "heart conditions" based on current input tokens). 

Cell State Update: Updates the cell state Ct  by combining the forget gate and input gate results. 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡  

The forget and input gates combine their outputs to update the internal memory cell. Old, less-relevant concepts are erased, and 

new clinical concepts are integrated, maintaining an up-to-date semantic understanding. 

Output Gate: Another sigmoid activation deciding which part of the updated cell state forms the output. 

𝒐𝒕 = 𝝈(𝑾𝒐. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐) 
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Determines what parts of the updated memory are output to influence the next hidden state. It ensures that only the medically 

relevant features (e.g., symptoms, procedures) are propagated for subsequent topic prediction. 

Hidden State: The final hidden state ht is derived by applying tanh activation to Ct and gating it by ot. 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ (𝐶𝑡) 

 The semantic summary of the document up to that moment is encoded in the hidden state at each time step, which aids the DTM-

RNNLSTM model in more accurately predicting the changing medical subjects. where H is the hidden dimension size, W, U, and 

b are learnable parameters, σ is the sigmoid activation, and ⊙ indicates element-wise multiplication. LSTM predicts logical 

subject transitions, updates with new clinical knowledge, and dynamically forgets unrelated medical topics in MedMentions. In  

theory, it models fine-grained semantic evolution in biomedical papers by updating internal memory and gating it at each token 

step. 

Step 3: Output Interpretation 

● The final hidden state hT (or the full sequence {h1,...,hT}encodes context-aware temporal topic transitions. 
● This can be used to: 

o Forecast topic distributions at future time steps 
o Smooth noisy or erratic topic changes 
o Cluster documents based on temporal topic trajectories 
o Provide better classification features for downstream tasks 

 

Loss Function for Sequence Prediction (Optional) 

If supervised (e.g., forecasting topic vector θ(T+1), use Mean Squared Error (MSE): 

𝐿𝑀𝑆𝐸 =
1

𝐾
∑

𝐾

𝑖=1

(𝜃̂𝑖
(𝑇+1)

− 𝜃𝑖
(𝑇+1)

)
2
 

If unsupervised (e.g., smoothing), a reconstruction loss between predicted and actual topic vectors can be used. Benefits of 

RNN/LSTM Integration are captures temporal dependencies across document-topic distributions. Learns non-linear transitions 

that traditional DTM may miss. Handles irregular time steps and sparse topic changes, common in medical datasets. 

 

Fusion Layer and Topic Coherence Optimization 

This layer integrates the temporal context captured by the LSTM with the original topic distribution  outputs from DTM. The idea 

is to produce semantically enriched, temporally coherent topic distributions that can be used to refine topic-word relationships and 

improve interpretability and performance. 

 

Step 1: Fusion via Softmax Transformation 

Let the final hidden state of the LSTM for a document d be: 

ℎ𝑑
(𝑇) ∈ 𝑅𝐻  

To convert this high-dimensional hidden representation back into a topic distribution vector  𝜃̂𝑑 ∈ 𝑅𝐻 (where K is the number of 

topics), apply a fully connected layer followed by softmax: 

𝜃̂𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎℎ𝑑
(𝑇) + 𝑏ℎ) 

Where, 𝑊𝑑 ∈ 𝑅𝑘 𝑥 𝑡 is the learnable weight matrix, 𝑏𝑑 ∈ 𝑅𝑘is the bias vector, 𝜃̂𝑑 represents the re-estimated topic distribution with 

enhanced temporal coherence. 

 

Step 2: Reconstruction of Topic-Word Distributions 

Using the temporally smoothed topic distributions 𝜃̂𝑑 , reconstruct the topic-word matrix 𝜙
𝑘,𝑤

, which encodes the probability of 

word w under topic k. A common approach is to use matrix factorization or soft attention over word embeddings: 

𝜙
𝑘,𝑤

=
𝑒𝑥𝑝 (𝐸𝑘

𝑇 . 𝑉𝑤)

∑𝑤′ (𝐸𝑘
𝑇 . 𝑉𝑤′ )

 

Where: 𝑊𝑘 ∈ 𝑅𝐷is the embedding of topic k, 𝑉𝑤 ∈ 𝑅𝐷is the embedding of word w, D is the embedding dimension Alternatively, 

one may learn 𝜙
𝑘 ,𝑤

 directly using: 
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𝜙
𝑘

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑘𝑉 + 𝑏𝑘) 

Step 3: Topic Coherence Optimization Objective 

To optimize the semantic coherence of the learned topics, use Topic Coherence Loss , such as Normalized Pointwise Mutual 

Information (NPMI) or UMass coherence. For UMass coherence (simpler and fast), given top-N words of topic k: {w1,w2,...,wN}, 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑈𝑀𝑎𝑠𝑠(𝑘) = ∑

𝑁

𝑖−2

∑

𝑖−1

𝑗=1

𝑙𝑜𝑔
𝐷(𝑤𝑖, 𝑤𝑗 )+∈

𝐷(𝑤𝑗)
 

Where, D(wi,wj)  is the co-occurrence count of words wi and wj in documents, ϵ is a small smoothing constant. This loss can be 

incorporated into training as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝜆. 𝐿𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒  

Where, Lreconstruction is the cross-entropy loss between original and predicted topic distributions or topic-word distributions. λ is a 

weighting factor to control coherence regularization 

 The suggested strategy has a number of advantages. First, temporal coherence is accomplished by the RNN/LSTM layer's use of 

hidden states, which gradually smooth out sudden or noisy topic changes to provide more logically consistent topic transitions. 

Second, the model facilitates semantic refinement, which improves the clarity of topic representation by making the word 

distributions within subjects more meaningful and interpretable. Finally, by limiting topic creation to highlight UMLS concep ts, 

the approach facilitates UMLS-aware reconstruction, which enables the integration of domain-specific information. Learned 

themes can be more closely aligned with clinical semantics by using strategies like topic-word masking or weighting algorithms 

based on UMLS relevance scores. 

 

UMLS-Based Preprocessing for Concept Annotation: 

To enrich the input data with biomedical semantics, UMLS-based preprocessing is performed as follows: 

Concept Mapping: Medical terms in the raw text are mapped to their corresponding UMLS Concept Unique Identifiers (CUIs) 

using tools like MetaMap or QuickUMLS. Each medical term in the raw text T is mapped to a UMLS Concept Unique Identifier 

(CUI), Let the document be: 

 

𝑇 = {𝑤1, 𝑤2, … , 𝑤𝑛} 

Using a tool such as MetaMap, QuickUMLS, or ScispaCy, apply: 

𝐶𝑈𝐼(𝑤𝑖) =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥𝑐∈𝐶𝑆𝑖𝑚(𝑤𝑖, 𝑐)  

Where, wi is a token or n-gram, C is the set of all UMLS concepts and Sim(wi,c) is a similarity function, often combining lexical, 

syntactic, and semantic features. The result is a sequence: 

𝑇𝐶𝑈𝐼 = {𝐶𝑈𝐼1, 𝐶𝑈𝐼2,… , 𝐶𝑈𝐼𝑚} 

Synonym Normalization: Synonyms and variants of medical terms are normalized to their canonical UMLS form, reducing 

vocabulary sparsity. Map synonyms and lexical variants to a canonical UMLS form using the UMLS Metathesaurus: 

For each CUI c, let its synonym set be S(c) and map any variant wi∈S(c) to the canonical representative wc  such that: 

𝑁𝑜𝑟𝑚(𝑤𝑖) = 𝑤𝑐 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 ∈ 𝑆(𝑐) 

 This reduces feature sparsity and ensures that variations like “hypertension” and “high blood pressure” are treated equivalen tly. 

Semantic Type Filtering: Only medically relevant semantic types (e.g., diseases, procedures, anatomy) are retained to ensure 

focus on clinically meaningful concepts. The UMLS Metathesaurus includes Semantic Types (TUI) for each concept. To retain 

clinically relevant content: 

Let, TUI(c) denote the semantic type(s) of concept c and Trelevant⊂All Semantic Types, 

Then retain only: 𝐶𝑈𝐼𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = {𝑐 ∈ 𝑇𝐶𝑈𝐼  | 𝑇𝑈𝐼(𝑐) ∈ 𝑇𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡} 

 For example:  Trelevant={Disease or Syndrome (T047),Sign or Symptom (T184),Body Part (T023),Procedure (T061)} 

This focuses the model on medically meaningful topics. 

Concept Embedding (optional): UMLS CUIs can be embedded using concept-based embeddings (e.g., cui2vec) and 

concatenated with the original word embeddings for model input. To inject biomedical knowledge directly into model training, 
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CUIs can be mapped to dense vector representations using pre-trained embeddings such as cui2vec, BioWordVec, or UMLS-

BERT. 

Let, ec∈Rdc be the embedding of a CUI. ew∈Rdw be the embedding of the corresponding word/token. concat(ew,ec)∈Rdw+dc be the 

final input embedding 

𝑒𝑖𝑛𝑝𝑢𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑤 , 𝑒𝑐) 

This enriched input is then used in downstream RNN/LSTM layers. This preprocessing step ensures that the topic model is 

grounded in a consistent and clinically meaningful semantic space, improving interpretability and accuracy in downstream 

evaluations. 

 The workflow of the suggested DTM-RNNLSTM model for improved medical topic modeling is shown in Figure 1. It is 

organized as a multi-stage pipeline that combines deep learning-based temporal coherence modeling, semantic enrichment, and 

temporal segmentation. Raw medical abstracts from the UMLS MedMentions collection are used as the starting point for the 

procedure. These abstracts are tokenized, paying close attention to domain-specific syntax like acronyms and hyphenated clinical 

words (like "COVID-19"). After tokenization, common English words and medical terminology that are not informative are 

removed using a biomedical-specific stopword list, leaving only semantically valuable text. Next, using tools like MetaMap, 

QuickUMLS, or ScispaCy with UMLS linking capability, the preprocessed tokens are mapped to UMLS Concept Unique 

Identifiers (CUIs).  This process converts surface phrases into structured medical ideas, allowing the vocabulary to be 

semantically grounded. Moreover, synonym normalization reduces vocabulary sparsity by mapping lexical variations of medical 

terms to a canonical form. By ensuring that only clinically relevant UMLS categories—like diseases, anatomy, and procedures—

are kept, semantic type filtering improves the model's focus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: workflow of the proposed DTM-RNNLSTM model 

Dynamic Topic Model (DTM) Layer: The pipeline begins with the Dynamic Topic Model (DTM) layer, which handles the 

modeling of topic evolution over time. The input corpus—typically consisting of medical abstracts, clinical narratives, or 

biomedical literature—is first segmented into temporally ordered slices based on a chosen time granularity such as publication 

year or hospital admission date. For each time slice t, DTM estimates two key distributions: the document-topic distribution θt
d  
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for each document d and the topic-word distribution ϕt
k for each latent topic k. These distributions are inferred using variational 

inference or Gibbs sampling techniques adapted for temporal transitions, allowing the model to track how topics shift semanti cally 

across time. The document-topic distributions θt  form a time-series representation of topic dynamics which serves as the input to 

the next layer. 

 Layer of RNN/LSTM for Temporal Coherence: The temporal coherence and contextual interdependence across time slices of the 

document-topic distribution are modeled using the Recurrent Neural Network (RNN), more especially the Long Short -Term 

Memory (LSTM) network. The series of θt vectors (document-topic proportions) over time slices serves as the input for this layer. 

In order to account for sequential evolution patterns and lessen the impacts of noise and sparsity, which are prevalent in medical 

text corpora, the LSTM network captures both short-term and long-term dependencies in these topic transitions. Using gating 

techniques to control the information flow, each LSTM cell mathematically changes its hidden state ht and cell state ct based on 

the input vector θt and prior states (ht−1,ct−1). 

Fusion Layer and Topic Coherence Optimization: The final component is the Fusion Layer, which refines the temporally 

contextualized topic representations. The hidden states ht output by the LSTM network are passed through a fully connected layer 

followed by a softmax activation function, producing re-estimated topic distributions 𝜽̂𝒕

(𝒌)
for each time slice. This softmax 

function is defined as: 

 

𝜃̂𝑡

(𝑘)
=

𝑒𝑥𝑝 (ℎ𝑡
(𝑘)

)

∑𝐾
𝑗=1 𝑒𝑥𝑝 (ℎ𝑡

(𝑗))
 

 

Where K is the number of topics and ℎ𝑡
(𝑘)

 is the k-th element of the hidden state vector. These enhanced topic distributions are 

then used to reconstruct refined topic-word matrices 𝜃̂𝑡

(𝑘)
improving both semantic alignment and temporal smoothness. This 

reconstruction process not only addresses sparsity and inconsistency in the original DTM output but also facilitates more accurate 

downstream tasks such as document classification or concept mapping. In the DTM-RNNLSTM framework seamlessly integrates 

statistical topic modeling with deep learning-based temporal modeling, guided by structured biomedical semantics, to achieve 

robust and contextually coherent topic representations in dynamic medical text corpora. 

 

DATA PREPROCESSING 
Effective preprocessing is critical for ensuring high-quality input to the proposed DTM-RNNLSTM model, particularly when 

working with semantically rich and temporally distributed medical text data. The preprocessing pipeline for this study is tailored 

to the characteristics of the MedMentions dataset, and consists of several systematic steps including tokenization, stopword 

removal, UMLS concept linking, and temporal slicing. 

 

MedMentions Dataset:  Over 4,000 abstracts from PubMed that have been manually annotated with over 350,000 linkages to 

UMLS (Unified Medical Language System) concepts make up the extensive biomedical corpus known as the MedMentions 

dataset. It is the perfect benchmark for semantic-rich topic modeling tasks because it encompasses over 3,000 distinct UMLS 

semantic categories in the biomedical area. Based on PubMed abstracts, MedMentions is a sizable, high-quality dataset that is 

frequently used for biomedical named item recognition and linking activities. This dataset is very useful for medical text mi ning 

because of its comprehensive annotations, which are mapped to concepts in the UMLS Metathesaurus.  The collection provides 

extensive biomedical coverage across a variety of categories, including diseases, medications, genes, anatomical words, and 

clinical procedures. Abstract IDs, abstract texts, abstract titles, annotated UMLS Concept Unique IDs (CUIs), semantic type 

codes, and character spans for each annotation are all included in their organized format, which makes concept -level analysis 

accurate and insightful. 

 

Preprocessing Steps 

Step 1: Tokenization 

Each abstract is split into individual tokens (words or terms) using standard biomedical tokenization techniques. Special att ention 

is paid to preserve important clinical terms such as hyphenated compounds (e.g., “COVID-19”), abbreviations, and chemical 

names. Break down raw abstracts into individual meaningful units called tokens, while preserving the structure of complex 

biomedical terms. 

 Standard Tokenization, Given an abstract ∈ 𝑹𝒏 , where: 

𝐴 = {𝑐1,𝑐2, … , 𝑐𝑛} 

Apply a tokenization function τ to segment into tokens: 
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𝜏(𝐴) = 𝑇 = {𝑡1 , 𝑡2 , … , 𝑡𝑘}, 𝑡𝑖 ∈ 𝑇𝑜𝑘𝑒𝑛𝑠 

However, biomedical tokenization modifies τ to preserve: 

● Hyphenated terms (e.g., "COVID-19", "TNF-alpha") 
● Abbreviations (e.g., "HbA1c", "ECG", "MRI") 
● Greek symbols and numeric compounds (e.g., “IL-6”, “5-HT”) 

Biomedical Regex Pattern (Custom Tokenizer) 

To preserve domain-specific tokens, apply regex patterns such as: 

pattern = r"[A-Za-z0-9\-]+(?:/[A-Za-z0-9\-]+)*|[A-Za-z]+" 

● Captures: COVID-19, TNF-alpha, IL-6, 5-HT, BRCA1/2 
● Rejects: punctuation and common split errors in standard tokenizers 

Final biomedical tokenization function: 

𝑇 = 𝜏𝑏𝑖𝑜(𝐴) = {𝑡𝑖|𝑚𝑎𝑡𝑐ℎ(𝑡𝑖, 𝑟𝑒𝑔𝑒𝑥𝑏𝑖𝑜)} 

Step 2: Stopword Removal 

Common English stopwords (e.g., “and,” “the,” “is”) and high-frequency non-informative biomedical terms are removed. A 

domain-specific stopword list is used to retain only the medically relevant tokens. Let: 

● Sgen : general English stopwords (e.g., “is”, “the”, “was”) 
● Sbio : domain-specific biomedical stopwords (e.g., “study”, “group”, “observed”, “significant”) 

Then: 

𝑆 = 𝑆𝑔𝑒𝑛 ∪ 𝑆𝑏𝑖𝑜  

Given token list T={t1,t2,…,tk}, apply: 

𝑇𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = {𝑡𝑖 ∈ 𝑇 |𝑡𝑖 ∉ 𝑆} 

Step 3: UMLS Concept Linking 

Tokens and phrases are linked to UMLS Concept Unique Identifiers (CUIs) using tools like MetaMap, QuickUMLS, or 

ScispaCy with UMLS linking. This step transforms surface-level terms into semantically grounded concepts, enabling more 

robust topic modeling. Synonyms and variant forms are normalized to their base concept, reducing redundancy in vocabulary. 

Transform raw biomedical tokens and phrases into UMLS Concept Unique Identifiers (CUIs) to: 

● Ground lexical items in a shared ontology. 
● Normalize synonyms and variants. 
● Reduce sparsity in the feature space. 
● Enable semantic-aware topic modeling. 

A. Concept Candidate Generation: Let the tokenized document be, 

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑘} 

It define candidate phrases P (n-grams): 

𝑃 = ⋃𝑛=1
𝑁

{(𝑡𝑖, 𝑡𝑖+1, … . , 𝑡𝑖+𝑛−1)| 1 ≤ 𝑖 ≤ 𝑘 − 𝑛 + 1} 

Tools like MetaMap, QuickUMLS, or ScispaCy’s Entity Linker scan these phrases pj∈P and match them to UMLS entries. 

B. Similarity Scoring & Candidate Selection 
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Each phrase pj is compared against UMLS terms using a string similarity function δ(pj,u), e.g.: Jaccard similarity, Levenshtein 

distance and Cosine similarity on character n-grams. Let: 

𝐶𝑈𝐼(𝑝𝑖 ) =𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥𝑢∈𝑈𝛿(𝑝𝑖 , 𝑐)  

Where, U is the set of UMLS terms. CUI(pj) is the top match (or set of top matches) for phrase p j. For example, the phrase "heart 

attack" maps to: 

CUI("heartattack")=C0027051 

C. Synonym and Variant Normalization 

For every matched concept c∈C with variants: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠(𝑐) = {𝑣1,𝑣2, … , 𝑣𝑚} 

Replace all vi∈Variants(c) with the canonical concept representation c. This ensures: 

∀𝑡∈ 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑖𝑓 𝑡 ∈ 𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠(𝑐) → 𝑡 ← 𝑐  

This step drastically reduces vocabulary size and sparsity. 

D. Optional: CUI Embedding (Concept Embedding) 

Use pretrained concept embeddings such as cui2vec: 

𝐸𝑚𝑏𝑒𝑑(𝐶𝑈𝐼𝑖) = 𝑒𝑖 ∈ 𝑅𝑑 

These embeddings capture semantic similarity in vector space: 

𝑒ℎ𝑒𝑎𝑟𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 ≈ 𝑒𝑚𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙 𝑖𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛  

The final document representation can be: 

● Bag-of-CUIs 
● TF-IDF of CUIs 
● Embedded CUIs (for deep models) 

Resulting Transformation, 

Original 

Text 

Phrase Mapped 

CUI 

Canonical Term 

“heart 

attack” 

heart 

attack 

C0027051 Myocardial 

Infarction 

“heart 

attack” 

cardiac 

arrest 

C0018802 Cardiac Arrest 

“high BP” high BP C0020538 Hypertension 

Step 4: Temporal Slicing 

The dataset is divided into temporal segments based on the publication year of each abstract. This time-based partitioning 

facilitates the use of Dynamic Topic Modeling, allowing the model to track topic transitions over time. Each time slice represents 

a distinct time step in the DTM-RNNLSTM pipeline, maintaining the chronological flow of information. 

Divide the dataset into chronologically ordered time slices based on metadata (e.g., publication year), enabling: Topic evolution 

tracking (via DTM) and Sequential learning across time (via RNN-LSTM) 

 

Define Time Attribute 

Let the dataset D consist of biomedical abstracts with metadata: 

𝐷 = {(𝑥𝑖, 𝑦𝑖 )}𝑖=1
𝑁  

Where, xi: i-th abstract/document and yi∈Z: Time label (e.g., publication year) 

 

Partition Documents into Time Slices 
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Let T={t1,t2,...,tK}  be the sorted set of unique time labels (e.g., publication years). For each time tk∈T, define the time slice 

Sk as: 𝑺𝒌 = {𝒙𝒊|𝒚𝒊 = 𝒕𝒌} 

 These results in K temporally ordered slices: 𝑆 = {𝑆1,𝑆2, … , 𝑆𝐾} 

 C. Corpus Restructuring 

Each slice Skbecomes a sub-corpus used independently by the DTM and sequentially by the RNN/LSTM. Let, θk: Document-

topic distributions learned from DTM for time slice Sk. ϕk: Topic-word distributions for Sk . Then the full temporal sequence 

becomes: 

𝛩 = {𝜃1 , 𝜃2 , … , 𝜃𝑘} 

𝜙 = {𝜙
1

, 𝜙
2

, … , 𝜙
𝐾

} 

 Where, θk
(d)∈RZ : Topic distribution for document d∈Sk and ϕk

(z)∈RV : Word distribution for topic z in time k. 

Input to DTM-RNNLSTM Pipeline 

● Each θk  becomes the input for time step k of the RNN-LSTM model: 
𝐼𝑛𝑝𝑢𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝛩 = {𝜃1, 𝜃2, … , 𝜃𝑘 } 

This facilitates modeling of temporal dependencies across evolving topics. 

Example: Suppose have Abstracts from 2015 to 2020 and Dataset is split by year. Then: 

T={2015,2016,2017,2018,2019,2020} 

For each year tk , it generate Sk , and compute θk,ϕk , feeding them into: 

● DTM for each Sk 

● RNN-LSTM for Θ as a sequence 

The preprocessing workflow for the proposed DTM-RNNLSTM architecture involves several domain-specific and temporal-

aware stages that enhance both the semantic quality and temporal resolution of biomedical text data, particularly in the cont ext of 

topic modeling for medical literature, Figure 2. The process begins with tokenization, where each medical abstract is segment ed 

into individual lexical units (tokens) using biomedical-specific tokenizers. These tokenizers are designed to retain critical clinical 

constructs such as hyphenated compounds (e.g., “COVID-19”), domain-specific abbreviations (e.g., “COPD”), and chemical or 

drug-related entities, ensuring that the linguistic granularity of biomedical text is preserved for downstream semantic analysis. 

Following tokenization, stopword removal is applied. Standard English stopwords (e.g., “and”, “the”, “is”) are filtered out 

alongside high-frequency but semantically uninformative biomedical terms.  

 This phase reduces noise and improves topic model focus by preventing the loss of significant clinical tokens through the use  of a 

domain-specific stopword list customized for biomedical literature. The text is then semantically enhanced through UMLS 

concept linkage. Raw tokens and multi-word phrases are mapped to Concept Unique Identifiers (CUIs) in the Unified Medical 

Language System (UMLS) using programs such as MetaMap, QuickUMLS, or ScispaCy with UMLS linkage. This lessens 

vocabulary sparsity and increases the robustness of taught themes by enabling the conversion of synonyms and lexical variants 

into unified concepts (for example, "heart attack" and "myocardial infarction" map to the same CUI). Pre-trained vectors like 

cui2vec or BioConceptVec, which capture semantic similarity in a dense numerical space for integration with deep learning 

models, can optionally be used to integrate these CUIs. 
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Figure 2: Preprocessing workflow for the proposed DTM-RNNLSTM 

 

Additionally, a semantic type filtering step is used to guarantee clinical relevance. By using the UMLS Semantic Network 

classifications, this eliminates CUIs that do not fall into medically relevant categories, such as illnesses, anatomical feat ures, 

symptoms, or procedures. Lastly, the entire corpus is divided into sections using temporal slicing, which is based on chronological 

markers like the year of publication or the date of patient admission. As a result, a temporally ordered collection of docume nt 

batches—also known as time slices—is produced, each of which represents a moment in time in the biological domain. In order 

for the Dynamic Topic Model (DTM) component to learn and change subjects over time, these slices are essential for feeding in to 

it. In order to allow more cohesive longitudinal topic transitions and maintain the organic chronological flow of medical 

knowledge growth, each temporal slice functions as an input timestep to the DTM-RNNLSTM architecture. Overall, this 

preprocessing pipeline creates a high-quality, time-aware input appropriate for sophisticated topic modeling and sequence learning 

frameworks in medical natural language processing by closely integrating biomedical semantics with temporal dynamics. In order 

to provide a strong basis for training the DTM-RNNLSTM model, this preprocessing pipeline makes sure that the input corpus is 
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both chronologically structured and semantically enriched. In the biomedical field, it is anticipated that the application of  UMLS 

ideas in particular will enhance topic coherence and interpretability. 

 

EXPERIMENTAL RESULT AND DISCUSSION 
Experimental Setup  
The experimental environment for this study consists of a Windows 10 operating system with 16 GB of RAM, an Intel Core i7 

processor, a 512 GB SSD, and an NVIDIA GeForce GTX 1660 Ti GPU. Python 3.10 is used as the primary programming 

language, along with machine learning libraries such as Scikit-learn, Gensim, TensorFlow, and PyTorch. The MedMentions 

dataset, a large corpus annotated with Unified Medical Language System (UMLS) concepts, is utilized for the evaluation of topic 

modeling algorithms. Comparative experiments are conducted across four models: Non-negative Matrix Factorization (NMF), 

Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), Dynamic Topic Model (DTM), and the proposed DTM-RNNLSTM 

architecture. Evaluation metrics include Coherence Score (C_v), Perplexity, Precision, Recall, F1-Score, and Accuracy, providing 

a comprehensive assessment of topic quality and document classification capabilities. Experiments are conducted for three 

different topic settings: 25, 50, and 100 topics (t = 25, t = 50, t = 100). 

For NMF, hyperparameters are configured with the number of components (topics) set to 25, 50, and 100, using the coordinate 

descent solver, an initialization method of 'nndsvd', maximum iterations of 500, and a regularization parameter (alpha) set t o 0.1. 

The L1 ratio for sparsity control is fixed at 0.5, with a random state of 42 to ensure reproducibility. For GSDMM, the number of 

clusters is initialized to 25, 50, and 100 accordingly. The hyperparameters alpha and beta, which control document -cluster and 

word-cluster distributions, are set to 0.1 and 0.1 respectively. The maximum number of iterations is set to 30, with early stopping 

if convergence criteria are met. For DTM, the data is first temporally segmented by publication year. The number of topics is set 

to 25, 50, and 100 for different experiments. The document-topic Dirichlet prior (alpha) and topic-word Dirichlet prior (eta) are 

set to 0.01. Variational inference is used with 1000 maximum EM iterations. The DTM model is implemented using the original 

DTM C++ code (wrapped in Python) compiled with Eigen3, with a batch size of 64 documents per slice. 

For the proposed DTM-RNNLSTM architecture, the DTM outputs (document-topic distributions per time slice) are fed into an 

LSTM network. The LSTM is configured with 2 hidden layers, each with 256 hidden units. A dropout rate of 0.3 is applied 

between layers to prevent overfitting. The optimizer used is Adam with an initial learning rate of 0.001, and the model is trained 

for 20 epochs with a batch size of 32. Gradient clipping is applied at a norm of 5.0 to stabilize training. The softmax layer  is 

employed at the output for reweighting topic distributions. Additionally, temporal coherence regularization is incorporated during 

training by minimizing the cosine distance between sequential hidden states. All experiments are repeated five times under ea ch 

configuration, and the mean values of the evaluation metrics are reported to ensure statistical robustness. Random seeds are 

consistently set across libraries (NumPy, TensorFlow, PyTorch) to guarantee reproducibility. 

 

Performance Analysis  

Coherence: In this study, the performance of topic modeling methods—Non-negative Matrix Factorization (NMF), Gibbs 

Sampling Dirichlet Multinomial Mixture (GSDMM), Dynamic Topic Model (DTM), and the proposed DTM-RNNLSTM—is 

evaluated using the Coherence Score (C_v), which quantifies the degree of semantic similarity between high-scoring words within 

each topic. Coherence is a widely accepted metric for assessing the interpretability and quality of topics, especially in biomedical 

domain texts where semantic consistency is critical. 

The Cv Coherence Score is computed based on a sliding window, a one-set segmentation of the top words, and an indirect cosine 

similarity measure between word pairs, defined as: 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝐶𝑣 =
1

|𝑊|
∑

|𝑊|

𝑖=1

∑

|𝑊|

𝑗=𝑖+1

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑉(𝑤𝑖), 𝑉(𝑤𝑗 )) 

Where W is the set of top N words for a topic, and V(w) denotes the context vector of word www based on a co-occurrence matrix 

or external corpus like MedMentions vocabulary. 

During experimentation, coherence values are calculated across 3 different topic numbers, T = 65, 125, 175, to assess scalability 

and model robustness with increasing topic granularity. Higher coherence values imply better semantic consistency across top 

topic words.  When compared to conventional models, the suggested DTM-RNNLSTM architecture continuously obtains greater 

coherence scores. There are two main reasons for this exceptional performance: (1) Topic evolution over time is captured by 

temporal modeling using DTM, which prevents sudden topic drifts; (2) Latent topic transitions are contextually retained through 

sequential smoothing using LSTM, which removes fragmentation brought on by irregular or sparse biological data. The model 

improves coherence by more precisely refining topic-word associations through re-estimating topic distributions using LSTM's 

final hidden states. On the other hand, NMF lacks the ability to model time, even if it uses matrix factorization to offer simple 

semantic categories.  As a cluster-oriented model, GSDMM does a good job of capturing local document clusters, but it has 
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trouble understanding theme patterns that change over time. Topic dynamics are captured by DTM alone, however it may be 

hampered by noise in brief clinical abstracts or small datasets. Thus, by combining deep temporal learning and probabilistic topic 

evolution, the combination of DTM and RNNLSTM offers a strong answer. 

 

Figure 3: Coherence Results (Cv) at Different Topic Numbers (T = 65, 125, 175) 

Figure 3 shown, the proposed DTM-RNNLSTM outperforms the baseline methods significantly, At T = 65, the proposed DTM-

RNNLSTM improves coherence by approximately 21.7% over DTM, 44% over GSDMM, and 62% over NMF. At T = 125, the 

DTM-RNNLSTM maintains stability, whereas traditional models show slight degradation due to topic fragmentation. At T = 175, 

despite the higher topic granularity (which typically reduces coherence), the DTM-RNNLSTM still outperforms other methods, 

showcasing its robustness in handling a finer division of medical concepts. This consistent trend across different topic size s 

clearly demonstrates the advantage of incorporating deep sequential learning into dynamic topic models for large biomedical 

datasets. 

Perplexity: Perplexity is one of the most widely used statistical measures to evaluate probabilistic topic models. It quantifies 

how well a probabilistic model (e.g., DTM, GSDMM) predicts a set of unseen documents. A lower perplexity value indicates that 

the model better fits the data, producing more "confident" predictions about the unseen data distribution. The perplexity is 

expressed as: 

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷𝑡𝑒𝑠𝑡) = 𝑒𝑥𝑝 (−
∑|𝐷𝑡𝑒𝑠𝑡 |

𝑑=1 𝑙𝑜𝑔 𝑝(𝑤𝑑 )

∑|𝐷𝑡𝑒𝑠𝑡 |
𝑑=1 𝑁𝑑

) 

Where, Dtest  = set of unseen documents, wd = sequence of words in document d, p(wd) = probability of document d under the 

model, Nd = number of words in document d. 

Thus, perplexity essentially measures the "surprise" of the model when encountering new data: 

Lower perplexity = better generalization. 

 By design, NMF is not probabilistic. Although reconstructed matrices can be used to calculate approximate perplexity, their 

performance is typically inferior due to the absence of explicit word likelihood modeling. GSDMM: Initially created for brief 

texts, GSDMM suffers with topic granularity (higher T) but exhibits mild confusion on bigger biological datasets. DTM: Clearl y 

simulates how subjects change over time. When modeling complicated temporal semantic shifts over extended sequences, as is 

common in biomedical data such as MedMentions, DTM performs poorly, yet it does rather well on perplexity. The suggested 

Using an RNN-LSTM architecture, DTM-RNNLSTM introduces temporal sequence modeling that captures long-range 

dependencies between changing topics across document timelines. Particularly when growing the number of topics, the LSTM's 

hidden states allow for improved estimate of document-topic distributions, which reduces perplexity. 

Figure 4 demonstrate the DTM-RNNLSTM significantly reduces perplexity by learning smoother topic transitions and predicting 

next word distributions more accurately over evolving biomedical terminologies. 
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Figure 4: Perplexity Results (Lower is Better) at Different Topic Numbers (T = 65, 125, 175) 

At T = 65, the proposed DTM-RNNLSTM model achieves about 16.7% lower perplexity compared to DTM, 30.7% lower than 

GSDMM, and 40% lower than NMF. At T = 125 and T = 175, although perplexity slightly increases (as expected due to topic 

fragmentation), DTM-RNNLSTM maintains the lowest perplexity compared to all other methods. GSDMM shows significant 

degradation at higher T because it is not built for modeling fine-grained, evolving medical topics. NMF, not being a true 

generative model, consistently shows higher perplexity, validating that it struggles with accurate likelihood estimation. DTM 

maintains reasonable performance but starts degrading as the topic granularity and temporal sequence length increase. Overall , 

DTM-RNNLSTM ensures better topic-word distribution estimation across document timeframes, thus significantly improving 

model generalization. 

 

Precision, Recall, F1-Score, and Accuracy 

In topic modeling evaluation (especially for classification-based applications like biomedical concept clustering), supervised 

metrics like Precision, Recall, F1-Score, and Accuracy are adapted to measure how correctly words or documents are assigned to 

their dominant topics. 

● Precision (Positive Predictive Value): Precision= TP / (TP+FP) 
● Recall (Sensitivity): Recall= TP /(TP+FN) 
● F1-Score (Harmonic Mean of Precision and Recall): F − score = 2 x (Precision x Recall) /( Precision + Recall) 
● Accuracy: Accuracy= (TP+TN) / ( TP+FP+FN+TN ) 

Where, TP = True Positives (Correct topic assignments), TN = True Negatives, FP = False Positives, FN = False Negatives. 

 Significant differences in the behavior, advantages, and disadvantages of the various topic modeling methodologies are reveal ed 

by the comparison study. A straightforward and interpretable matrix factorization technique, non-negative matrix factorization 

(NMF) is both computationally effective and simple to comprehend. But in complex datasets, the lack of a strong topic-document 

association mechanism results in noisier topic labels and less semantic alignment. Strong grouping skills are demonstrated by the 

Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM) model, especially for extremely brief biological abstracts or snippets.  

However, when the number of topics (T) rises, its performance degrades, leading to topic fragmentation and imprecise clusters . 

By capturing the shifting distribution of words across time slices, the Dynamic Topic Model (DTM) provides notable benefits f or 

modeling the temporal evolution of themes across sequential data. Nevertheless, DTM's capacity to sustain consistent topic 

transitions in dynamic biomedical corpora is constrained by its poor memory retention across lengthy subject sequences. 

 

 The suggested DTM-RNNLSTM architecture, on the other hand, overcomes these drawbacks by incorporating deep sequential 

learning into dynamic topic modeling. Because DTM-RNNLSTM can simulate Temporal Sequential Context—where Long Short-

Term Memory (LSTM) units can recall previous subject states—it is technically superior. For longitudinal text corpora, this 

improves word-topic assignments' accuracy and consistency over time. Furthermore, the layered RNN-LSTM layers efficiently 

capture semantic drifts and subtle topic transitions, which are typical in biomedical domains like MedMentions, through Deep 

Feature Extraction. Additionally, by lowering false positives and false negatives in topic prediction, the DTM-RNNLSTM 

framework improves generalization by increasing the true positive rate across assessments. 

 

 As seen in Figure 5-7, The DTM-RNNLSTM continuously beats the NMF, GSDMM, and conventional DTM models in terms of 

precision, recall, F1-score, and accuracy as a result of these architectural improvements. The model's scalability and robustness for 

intricate, real-world biomedical text datasets are demonstrated by its ability to sustain good performance even when the number of 

themes increases (T = 65, 125, 175).  The suggested DTM-RNNLSTM architecture continuously leads across all four assessment 

metrics—Precision, Recall, F1-Score, and Accuracy—for all topic numbers (T = 65, 125, 175), according to key findings from the 

experimental results. It is noteworthy that when the number of topics increases, the performance disparity between DTM-
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RNNLSTM and other models widens, suggesting that DTM-RNNLSTM is more robust and scalable when handling topic spaces 

with greater complexity. However, as the number of topics increases, Non-negative Matrix Factorization (NMF) exhibits a rapid 

decline in performance. This is mainly because, at higher T values, the matrix approximation becomes less coherent for capturing 

fine-grained biological themes. Similar to this, the Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM) model exhibits a 

significant decline in performance at higher topic counts (T = 175), primarily because it is unable to sustain coherent clust ers as 

topic granularity increases. However, it performs fairly well at lower topic counts (T = 65). In comparison to the suggested DTM-

RNNLSTM technique, the Dynamic Topic Model (DTM) exhibits strong Precision, Recall, and F1-Score while maintaining 

comparatively consistent performance. However, its efficacy is limited due to its inability to learn sequential dependencies over an 

extended period of time. 

 
Figure 5: Topic modeling methods with different extracted topics T = 65,( recall, precision, and F-score). 

 
Figure 6: Topic modeling methods with different extracted topics T = 125,( recall, precision, and F-score). 

 
Figure 7: Topic modeling methods with different extracted topics T = 175,( recall, precision, and F-score). 
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 NMF struggles with reduced recall and overall accuracy, while displaying moderate precision and F1-score in metric-specific 

observations. GSDMM exhibits good precision in the beginning, but as topic counts increase, recall and F1-Score drastically 

decline. Despite maintaining a good balance across all measures, DTM is unable to match DTM-RNNLSTM's superior 

performance. DTM-RNNLSTM demonstrates its technical strength by achieving the highest results in Precision, Recall, F1-Score, 

and Accuracy. By retaining high Precision, strong Recall, high F1-Score, and resilient Accuracy as the topic modeling problem 

becomes more complex, the suggested DTM-RNNLSTM architecture performs noticeably better than conventional topic 

modeling techniques. It is ideal for complicated biomedical datasets like MedMentions because of its capacity to capture long -

term dependencies and temporal semantic drifts. 

CONCLUSION 
A thorough examination of topic modeling approaches using the biomedical MedMentions dataset was carried out in this research. 

The suggested DTM-RNNLSTM continuously outperforms conventional models, especially as the number of topics rises, 

according to evaluation across Coherence, Perplexity, Precision, Recall, F1-Score, and Accuracy metrics. The DTM-RNNLSTM 

represents semantic drifts in biological ideas, captures temporal sequential relationships, and generalizes more successfully  across 

complex and changing topic structures. Due to their intrinsic constraints in modeling fine-grained biological semantics, NMF and 

GSDMM work rather well at lower topic complexities but become much less successful at higher topic counts.  Although it doesn't 

have the memory capacity to capture long-term transitions as well as DTM-RNNLSTM, traditional DTM maintains steady 

behavior. All things considered, the findings confirm that deep sequential architecture, when combined with topic models, 

provides better topic assignment quality, particularly in fields with rich and dynamic conceptual spaces like biomedical literature. 

 Future research approaches include improving the model even more by incorporating attention processes to dynamically focus on 

important topic transitions throughout time, building upon the encouraging outcomes of DTM-RNNLSTM. Richer semantic 

capture and even better temporal modeling may result from replacing LSTM units with Transformer-based designs. Another 

approach is domain-specific pre-training, which improves topic coherence and interpretability in highly specialized biomedical 

corpora by using biomedical language models like BioBERT or ClinicalBERT as the embedding layer prior to topic modeling. 

Distributed training techniques could also be used to investigate scalability to very big datasets and real-time developing streams 

(like clinical notes or biomedical papers). Lastly, the generalizability and robustness of the suggested DTM-RNNLSTM system 

beyond the MedMentions benchmark may be confirmed by a more thorough assessment across additional biomedical datasets and 

multilingual corpora.
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