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ABSTRACT:

The exponential rise in unstructured medical text volume in recent years has led to a pressing need for sophisticated topic
modeling methods that can capture temporal dynamics and semantic richness. This study suggests a brand-new hybrid framework
called DTM-RNNLSTM, which combines the sequential learning powers of Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM) networks with Dynamic Topic Modeling (DTM). The model integrates ideas from the Unified Medical
Language System (UMLS) to improve semantic relevance, making it possible to identify issues with medical significance. The
MedMentions dataset, a sizable corpus annotated with UMLS concepts, is used to assess the efficacy of the suggested model.
Three robust baseline models are compared: the Dynamic Topic Model (DTM), Gibbs Sampling Dirichlet Multinomial Mixture
(GSDMM), and Non-negative Matrix Factorization (NMF). Coherence, Perplexity, Precision, Recall, F1-Score, and Accuracy are
evaluation measures that address both statistical and semantic performance factors. The findings show that DTM-RNNLSTM
outperforms conventional methods in capturing changing topic patterns and greatly enhances semantic coherence.

Keywords: Coherence and Perplexity, Dynamic Topic Model (DTM), Long Short-Term Memory (LSTM), Medical Natural
Language Processing (NLP), MedMentions Dataset, Recurrent Neural Networks (RNN), Semantic Integration, Topic Modeling,
Unified Medical Language System (UMLS).

INTRODUCTION

The amount of textual data being generated in the medical industry is increasing at an unprecedented rate. A large and
continuously expanding collection of unstructured medical texts is facilitated by Electronic Health Records (EHRs), clinical trial
reports, scientific research papers, and online health forums [1]. The digital transformation of healthcare systems and the growing
focus on data-driven medical research have further accelerated this surge. Advanced natural language processing (NLP)
techniques are crucial because of the unstructured nature of this data, which makes it difficult to extract insights that may be put to
use [2]. In order to organize, summarize, and uncover hidden patterns in massive text corpora, topic modeling has become an
essential tool. Topic models help with a number of medical applications, including public health monitoring, clinical decision
assistance, illness trend analysis, and literature review automation [3]. These models improve knowledge discovery, informati on
retrieval, and evidence-based medical research by offering a probabilistic framework for identifying hidden themes in text data.

Traditional topic modeling techniques, such Latent Dirichlet Allocation (LDA) [4], Non-negative Matrix Factorization (NMF) [5],
and even Dynamic Topic Models (DTM) [6], are useful, but they face two major obstacles in the medical field: temporal
dynamics and semantic understanding. First, because these models are mainly statistical in nature, they frequently ignore the
domain-specific semantics present in biological texts, producing subjects that are ambiguous or clinically irrelevant. Second,
DTM does not adequately simulate long-term dependencies or context preservation across changing document sequences, even
while it does capture temporal changes in subjects. Furthermore, these approaches overlook outside medical expertise, such the
Unified Medical Language System (UMLS) [7], which could greatly improve the topic's relevance and interpretability. This
highlights the necessity for a hybrid modeling approach that integrates deep sequential learning, domain-specific semantic
enrichment, and temporal awareness. The U.S. National Library of Medicine created the Unified Medical Language System
(UMLS), a comprehensive biological vocabulary collection that incorporates more than 200 medical classifications and
terminologies. It enables uniform understanding of medical language by offering a standardized mapping of concepts and
synonymous phrases across several healthcare areas. Because it facilitates entity linkage, concept disambiguation, and semantic
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normalization, UMLS is very useful for natural language processing (NLP) applications. A key component of precise topic
modeling in the healthcare industry, UMLS improves the semantic interpretability of medical data by bringing unstructured text
into line with structured medical ideas [8§].

Although current topic modeling techniques have shown useful in identifying themes in medical corpora, they frequently fall
short in their ability to accurately represent temporal transitions and integrate semantic understanding. Conventional models
cannot capture changing topics in longitudinal medical datasets well, and they are not able to leverage domain-specific
information such as UMLS. Furthermore, the sequential character of medical narratives, such patient histories or time-stamped
articles, is difficult for current techniques to depict. This disparity limits the themes' applicability in clinical or research settings by
impeding the development of cogent and medically significant topics.

This study suggests a sophisticated hybrid model and an all-encompassing assessment approach to improve subject modeling in
medical literature in order to overcome these issues. Dynamic Topic Models (DTM) [9] and the sequential learning power of
Recurrent Neural Networks (RNN) [10] and Long Short-Term Memory (LSTM) [11] networks are combined in this innovative
framework. Through this fusion, the model is able to preserve context and long-range dependencies in the text while capturing the
temporal evolution of the topic. The model's semantic awareness is improved with the use of UMLS concept annotations during
preprocessing. This enables it to produce themes that are interpretable and medically relevant, matching clinical concepts and
terminology from the real world. Three well-known topic modeling approaches are used to compare the suggested model:
Dynamic Topic Model (DTM) [13], Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), and Non-negative Matrix
Factorization (NMF) [12]. Metrics like Coherence, Perplexity, Precision, Recall, F1-Score, and Accuracy can be used to assess the
statistical and semantic performance of the suggested approach thanks to these baselines. By integrating deep learning, temporal
modeling, and semantic integration, this study offers a fresh approach to medical topic modeling with the goal of improving the
caliber and usefulness of knowledge extraction in biomedical text mining.

This paper's remaining sections are arranged as follows: The related work is covered in Section II, with an emphasis on current
methods for temporal sequence learning and dynamic topic modeling in clinical or medical text analysis. A Dynamic Topic Model
(DTM) layer, a Recurrent Neural Network/Long Short-Term Memory (RNN/LSTM) layer for capturing temporal coherence, and
a fusion layer intended to maximize topic coherence are all integrated in the suggested approach, DTM-RNNLSTM, which is
described in Section III. The application of UMLS-based preprocessing for precise clinical concept annotation is also covered in
this section. The data preprocessing procedures used to get the input ready for model training are described in Section IV. The
setup and thorough performance analysis utilizing coherence scores, perplexity, and common classification metrics like accuracy,
precision, recall, and F1-score are presented in Section V along with the experimental findings and discussion. The work is finally
concluded in Section VI, which also suggests future research areas.

RELATED WORK

For the purpose of organizing and comprehending vast amounts of unstructured biomedical text, topic modeling has become a
crucial tool. Conventional models like Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan, 2003) [14] and Non-negative
Matrix Factorization (NMF) (Lee & Seung, 2001) [15] have been used extensively in biomedical literature to uncover latent
semantic structures, but they frequently fail to capture the particular nuances of clinical and biomedical language, such as
synonymy and domain-specific terminology. To overcome the shortcomings of static models, Dynamic Topic Models (DTM)
were introduced to capture topic evolution over time (Blei & Lafferty, 2006) [16]. DTM has been used in the healthcare industry
to research topics, disease prevalence, and patient record evolution.

DTM is useful for simulating temporal changes, but it is unable to identify the more intricate sequential patterns and contextual
connections found in longitudinal data. In order to improve text representation, recent developments in deep learning have br ought
models such as Neural Variational Document Models (NVDM) and hybrid models that combine Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks (Miao, Yu, & Blunsom, 2016) [17]. These models do better than
traditional methods at capturing document-level dependencies and context. Due to a lack of semantic interaction with outside
medical information sources, their use in medical subject modeling is still restricted. By connecting unstructured text to or ganized
biomedical concepts, the Unified Medical Language System (UMLS) has been utilized to improve medical natural language
processing applications. Research has demonstrated that UMLS-based semantic annotation improves text categorization, entity
recognition, and concept normalization (Limsopatham & Collier, 2016; Wang et al., 2018). [18] [19]. UMLS incorporation into
subject modeling frameworks remains understudied despite its demonstrated advantages. Proposed by Yin and Wang (2014) [20],
the Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM) model has proven to perform better when processing brief texts
like clinical notes or medical papers. GSDMM is useful for grouping brief segments together, but it is unable to incorporate
domain-specific semantics or represent temporal evolution. Each of the current subject modeling approaches has special
advantages. RNN/LSTM for sequential learning, UMLS for semantic enrichment, and DTM for temporal modeling. To satisfy the
requirements of dynamic, semantically complex medical datasets, no existing model effectively integrates these features. By
putting up a hybrid DTM-RNNLSTM architecture combined with UMLS for improved topic modeling in biomedical texts, this
study seeks to close this gap.
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Proposed Methodology: DTM-RNNLSTM

The hybrid architecture of the suggested DTM-RNNLSTM model was created to get beyond the drawbacks of conventional topic
modeling in medical texts. This is accomplished by combining the context-preserving and sequence-modeling power of Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) units with the temporal topic evolution capabilities of Dynamic
Topic Models (DTM). Through UMLS-based preprocessing, it also improves semantic understanding, allowing the model to
provide themes with clinical significance. The following elements make up the DTM-RNNLSTM architecture:

Dynamic Topic Model (DTM) Layer

Dynamic Topic Models (DTMs), extend Latent Dirichlet Allocation (LDA) to capture temporal topic evolution. In this model, the
topics are allowed to vary over discrete time slices, making it suitable for modeling corpora where content changes over time—
such as medical literature or clinical notes. DTM is employed as the first component to model topic evolution over time. The input
corpus is split into time-stamped segments (e.g., by publication year or patient admission date). For each time slice, DTM learns a
set of latent topics and their distribution across documents, capturing how these topics evolve temporally.

Step 1: Temporal Segmentation of the Corpus
Let the entire corpus D be divided into T time slices: D = {D(,D®@), ..., DM}
Each DO represents a sub-corpus of documents corresponding to time slice t (e.g., a publication year).

Step 2: Generative Process of DTM
For each time slice te{l,...,T}:

1. For each topic ke{1,...,K}:
o The topic-word distribution Bx® is drawn from a Gaussian random walk in the natural parameter space (log-space):

n,(f)~N(n,(f_1),021),for t>1
® _ @®
B, = softmax(n;’)

o This allows each topic’s word distribution to evolve smoothly over time.
2. For each document deD®:
o Draw document-topic distribution: 8 ;~Dir (a)
o For each word wgywdn in document d:
*  Draw a topic assignment: z;,~Multinomial (6;)

*  Draw a word: w,,~Multinomial (ﬁz(t?n)

Where, n- Natural parameter for topic k at time t (logit of B), Bk®- Word distribution for topic k at time t, 84 -Topic distribution
for document d, Z4, -Topic assignment for the n-th word in document d. wan - The n-th word in document d.

Inference and Learning
DTM uses Variational Inference or Kalman Filtering with Expectation-Maximization (EM) to estimate:

e The topic trajectories {r],(f)}’,g=1
e Document-topic distributions 64
e Per-word topic assignments Zgn

In some implementations, Variational Kalman Filtering is employed for efficient time series inference. The overall goal is to
maximize the Evidence Lower Bound (ELBO) across time slices:

T
L= Eyenlloglog P(D©O16,2,6®)] - KLIq(6, DIIP(6,2)
t=1

Where, P(B®|p¢Vacts as a temporal prior, KL is the Kullback—Leibler divergence between variational and true posteriors. This
process ensures that topic distributions are temporally coherent, with smooth transitions between adjacent time slices—making
DTM a powerful foundation for sequential modeling with RNN-LSTM layers.
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RNN/LSTM Layer for Temporal Coherence

The purpose of integrating the RNN/LSTM layer with the DTM is to model long-term dependencies and contextual transitions
across document-topic distributions over time. This is especially important in medical texts, where topics may shift slowly, be
influenced by previous contexts, or appear intermittently.

Step 1: Preparing Input for RNN/LSTM

From the DTM component, it obtains document-topic distributions HEP € RX for each document d in time slice t, where K is the
number of topics.

It aggregates these distributions into time series of topic vectors per document or per aggregated entity (e.g., disease class, concept
cluster):

(@) 1 2 T
0" =[6",6,..,6"] € RT*
This matrix becomes the input sequence for the RNN/LSTM layer.

Step 2: Recurrent Modeling with LSTM

LSTM (Long Short-Term Memory) networks are designed to capture long-range dependencies in sequential data. Unlike vanilla
RNNs, LSTMs mitigate the vanishing/exploding gradient problem through their gating mechanisms. Let’s define the input to the
LSTM at time t as:

Xy = H‘gt)

The LSTM unit computes hidden states h, € R and cell states ¢, € R"using the following equations:
LSTM works as follow,

Forget Gate: Computes a sigmoid activation over the current input and previous hidden state, outputting values between 0
and 1 to decide which parts of the previous memory cell C; should be forgotten.

fe=0Wg.[hiq,x:] + bf)

When processing biomedical texts from MedMentions, the forget gate learns to selectively remove outdated or irrelevant
medical concepts from memory. For example, if earlier tokens discussed '"diabetes" but the context shifts to
"cardiovascular disease," the forget gate helps discard diabetes-related memory.

Input Gate: Computes another sigmoid to decide which new values will be updated in the memory cell.
iy = o(W;.[heq,%¢] + b;)

This gate controls the addition of new UMLS-based concepts into the model’s memory. When a new clinical term like
"angioplasty" appears, the input gate decides how strongly this new information should influence the next topic state.

Candidate Memory (Cell Candidate): Computes a tanh-activated vector of new candidate values C; that could be added to the
state.
Co=o0Wc.[heq, x]+ be)

Generates potential updates to the LSTM’s memory, representing possible new biomedical concepts or topic shifts (e.g.,
proposing a new cluster around "heart conditions" based on current input tokens).

Cell State Update: Updates the cell state C; by combining the forget gate and input gate results.
Ce = fiOC1 + i O C,

The forget and input gates combine their outputs to update the internal memory cell. Old, less-relevant concepts are erased, and
new clinical concepts are integrated, maintaining an up-to-date semantic understanding.

Output Gate: Another sigmoid activation deciding which part of the updated cell state forms the output.
0, =0(W,.[hq,x,] + b,)
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Determines what parts of the updated memory are output to influence the next hidden state. It ensures that only the medically
relevant features (e.g., symptoms, procedures) are propagated for subsequent topic prediction.

Hidden State: The final hidden state h, is derived by applying tanh activation to C; and gating it by ox.
ht = OtQtaTlh (Ct)

The semantic summary of the document up to that moment is encoded in the hidden state at each time step, which aids the DTM -
RNNLSTM model in more accurately predicting the changing medical subjects. where H is the hidden dimension size, W, U, and
b are learnable parameters, o is the sigmoid activation, and © indicates element-wise multiplication. LSTM predicts logical
subject transitions, updates with new clinical knowledge, and dynamically forgets unrelated medical topics in MedMentions. In
theory, it models fine-grained semantic evolution in biomedical papers by updating internal memory and gating it at each token
step.

Step 3: Output Interpretation

e The final hidden state hr (or the full sequence {hi,...,hr}encodes context-aware temporal topic transitions.
e This can be used to:

o Forecast topic distributions at future time steps

o Smooth noisy or erratic topic changes

o Cluster documents based on temporal topic trajectories

o Provide better classification features for downstream tasks

Loss Function for Sequence Prediction (Optional)
If supervised (e.g., forecasting topic vector 0(T+1), use Mean Squared Error (MSE):
K

1 A(T+1 T+1)\2
Lyse = Ez (ei( = _Hi( * ))
i=1

If unsupervised (e.g., smoothing), a reconstruction loss between predicted and actual topic vectors can be used. Benefits of
RNN/LSTM Integration are captures temporal dependencies across document-topic distributions. Learns non-linear transitions
that traditional DTM may miss. Handles irregular time steps and sparse topic changes, common in medical datasets.

Fusion Layer and Topic Coherence Optimization

This layer integrates the temporal context captured by the LSTM with the original topic distribution outputs from DTM. The idea
is to produce semantically enriched, temporally coherent topic distributions that can be used to refine topic-word relationships and
improve interpretability and performance.

Step 1: Fusion via Softmax Transformation
Let the final hidden state of the LSTM for a document d be:

h e pH

To convert this high-dimensional hidden representation back into a topic distribution vector ] 4 € R (where K is the number of
topics), apply a fully connected layer followed by softmax:

gd = softmax(Whhng) + by)

Where, W,; € R*¥*tis the learnable weight matrix, b; € R¥is the bias vector, 9d represents the re-estimated topic distribution with
enhanced temporal coherence.

Step 2: Reconstruction of Topic-Word Distributions
Using the temporally smoothed topic distributions 8 , reconstruct the topic-word matrix ¢k > Which encodes the probability of
word w under topic k. A common approach is to use matrix factorization or soft attention over word embeddings:
b = _cxp LY
WY (ERV)

Where: W, € RPis the embedding of topic k, ¥, € RPis the embedding of word w, D is the embedding dimension Alternatively,
one may learn ¢k , directly using:
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¢, = softmax(W,V + by)

Step 3: Topic Coherence Optimization Objective
To optimize the semantic coherence of the learned topics, use Topic Coherence Loss, such as Normalized Pointwise Mutual
Information (NPMI) or UMass coherence. For UMass coherence (s1mpler and fast), given top-N words of topic k: {wi,w»,...,wn},

D(Wl, w])+e
Coherenceypqss (k) = Z Z D(W )
J

Where, D(wi,w;) is the co-occurrence count of words w; and w; in documents, € is a small smoothing constant. This loss can be
incorporated into training as:

Ltotal = Lreconstruction + A-Lcoherence

Where, Licconstuction 18 the cross-entropy loss between original and predicted topic distributions or topic-word distributions. A is a
weighting factor to control coherence regularization

The suggested strategy has a number of advantages. First, temporal coherence is accomplished by the RNN/LSTM layer's use of
hidden states, which gradually smooth out sudden or noisy topic changes to provide more logically consistent topic transitions.
Second, the model facilitates semantic refinement, which improves the clarity of topic representation by making the word
distributions within subjects more meaningful and interpretable. Finally, by limiting topic creation to highlight UMLS concepts,
the approach facilitates UMLS-aware reconstruction, which enables the integration of domain-specific information. Learned
themes can be more closely aligned with clinical semantics by using strategies like topic-word masking or weighting algorithms
based on UMLS relevance scores.

UMLS-Based Preprocessing for Concept Annotation:

To enrich the input data with biomedical semantics, UMLS-based preprocessing is performed as follows:

Concept Mapping: Medical terms in the raw text are mapped to their corresponding UMLS Concept Unique Identifiers (CUIs)
using tools like MetaMap or QuickUMLS. Each medical term in the raw text T is mapped to a UMLS Concept Unique Identifier
(CUI), Let the document be:

T = {wy,wy, ..., w,}

Using a tool such as MetaMap, QuickUMLS, or ScispaCy, apply:
CUI(w;) =arg arg maxecSim(w;, ¢)

Where, w; is a token or n-gram, C is the set of all UMLS concepts and Sim(wi,c) is a similarity function, often combining lexical,
syntactic, and semantic features. The result is a sequence:
TCUI = {CUIl, CUIz, ey CUIm}

Synonym Normalization: Synonyms and variants of medical terms are normalized to their canonical UMLS form, reducing
vocabulary sparsity. Map synonyms and lexical variants to a canonical UMLS form using the UMLS Metathesaurus:

For each CUI ¢, let its synonym set be S(c) and map any variant wi€S(c) to the canonical representative w, such that:
Norm(w;) = w, where w; € 5(c)

This reduces feature sparsity and ensures that variations like “hypertension” and “high blood pressure” are treated equivalently.
Semantic Type Filtering: Only medically relevant semantic types (e.g., diseases, procedures, anatomy) are retained to ensure
focus on clinically meaningful concepts. The UMLS Metathesaurus includes Semantic Types (TUI) for each concept. To retain
clinically relevant content:

Let, TUI(c) denote the semantic type(s) of concept ¢ and TrelevantC All Semantic Types,

Then retain only: CUISfjtereq = {¢ € Teys | TUI(C) € Tretevant}
For example: Treievan={Disease or Syndrome (T047),Sign or Symptom (T184),Body Part (T023),Procedure (T061)}

This focuses the model on medically meaningful topics.
Concept Embedding (optional): UMLS CUIs can be embedded using concept-based embeddings (e.g., cui2vec) and
concatenated with the original word embeddings for model input. To inject biomedical knowledge directly into model training,
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CUIs can be mapped to dense vector representations using pre-trained embeddings such as cui2vec, BioWordVec, or UMLS-
BERT.

Let, ec.€R9° be the embedding of a CUI e,€RI¥ be the embedding of the corresponding word/token. concat(ey,e.)ERIV 4 be the
final input embedding
einput = concat(ey, e.)

This enriched input is then used in downstream RNN/LSTM layers. This preprocessing step ensures that the topic model is
grounded in a consistent and clinically meaningful semantic space, improving interpretability and accuracy in downstream
evaluations.

The workflow of the suggested DTM-RNNLSTM model for improved medical topic modeling is shown in Figure 1. It is
organized as a multi-stage pipeline that combines deep learning-based temporal coherence modeling, semantic enrichment, and
temporal segmentation. Raw medical abstracts from the UMLS MedMentions collection are used as the starting point for the
procedure. These abstracts are tokenized, paying close attention to domain-specific syntax like acronyms and hyphenated clinical
words (like "COVID-19"). After tokenization, common English words and medical terminology that are not informative are
removed using a biomedical-specific stopword list, leaving only semantically valuable text. Next, using tools like MetaMap,
QuickUMLS, or ScispaCy with UMLS linking capability, the preprocessed tokens are mapped to UMLS Concept Unique
Identifiers (CUIs). This process converts surface phrases into structured medical ideas, allowing the vocabulary to be
semantically grounded. Moreover, synonym normalization reduces vocabulary sparsity by mapping lexical variations of medical
terms to a canonical form. By ensuring that only clinically relevant UMLS categories—like diseases, anatomy, and procedures—
are kept, semantic type filtering improves the model's focus.

Start: Raw Medical
Corpus

v

Preprocessing

! DTM Layer: Topic Evolution

Tokenization & Stopword Temporal Slicing
Remaval

For each time slice t

UMLS Concept
Mapping((MetaMap/QuickU
MLS/ScispaCy)) Sequence Of t across time

Normalization and Semantic
Filtering

\ 4
RNN-LSTM Layer: Tomporal Coherence

LSTM Learns dependencies across 6,

| Fusion Laver: Topic Refinement |

| Final Hidden States->Softmax |

Re-estimated 6, with Temporal

Coherence

Re-Construct Refined Topic-Word
Matrix

v

Output: Enhanced Topic Modeling
Representation

Figure 1: workflow of the proposed DTM-RNNLSTM model

Dynamic Topic Model (DTM) Layer: The pipeline begins with the Dynamic Topic Model (DTM) layer, which handles the
modeling of topic evolution over time. The input corpus—typically consisting of medical abstracts, clinical narratives, or
biomedical literature—is first segmented into temporally ordered slices based on a chosen time granularity such as publication
year or hospital admission date. For each time slice t, DTM estimates two key distributions: the document-topic distribution 0,4
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for each document d and the topic-word distribution ¢ for each latent topic k. These distributions are inferred using variational
inference or Gibbs sampling techniques adapted for temporal transitions, allowing the model to track how topics shift semantically
across time. The document-topic distributions 6, form a time-series representation of topic dynamics which serves as the input to
the next layer.

Layer of RNN/LSTM for Temporal Coherence: The temporal coherence and contextual interdependence across time slices of the
document-topic distribution are modeled using the Recurrent Neural Network (RNN), more especially the Long Short-Term
Memory (LSTM) network. The series of 6t vectors (document-topic proportions) over time slices serves as the input for this layer.
In order to account for sequential evolution patterns and lessen the impacts of noise and sparsity, which are prevalent in medical
text corpora, the LSTM network captures both short-term and long-term dependencies in these topic transitions. Using gating
techniques to control the information flow, each LSTM cell mathematically changes its hidden state ht and cell state ct based on
the input vector 0t and prior states (ht—1,ct—1).

Fusion Layer and Topic Coherence Optimization: The final component is the Fusion Layer, which refines the temporally
contextualized topic representations. The hidden states h; output by the LSTM network are passed through a fully connected layer

o . . . o A . . .
followed by a softmax activation function, producing re-estimated topic distributions Bt for each time slice. This softmax
function is defined as:

gt _ e (")

( _
K, exp (h)

Where K is the number of topics and hgk) is the k-th element of the hidden state vector. These enhanced topic distributions are

then used to reconstruct refined topic-word matrices ’Q\Ek)improving both semantic alignment and temporal smoothness. This
reconstruction process not only addresses sparsity and inconsistency in the original DTM output but also facilitates more accurate
downstream tasks such as document classification or concept mapping. In the DTM-RNNLSTM framework seamlessly integrates
statistical topic modeling with deep learning-based temporal modeling, guided by structured biomedical semantics, to achieve
robust and contextually coherent topic representations in dynamic medical text corpora.

DATA PREPROCESSING

Effective preprocessing is critical for ensuring high-quality input to the proposed DTM-RNNLSTM model, particularly when
working with semantically rich and temporally distributed medical text data. The preprocessing pipeline for this study is tailored
to the characteristics of the MedMentions dataset, and consists of several systematic steps including tokenization, stopword
removal, UMLS concept linking, and temporal slicing.

MedMentions Dataset: Over 4,000 abstracts from PubMed that have been manually annotated with over 350,000 linkages to
UMLS (Unified Medical Language System) concepts make up the extensive biomedical corpus known as the MedMentions
dataset. It is the perfect benchmark for semantic-rich topic modeling tasks because it encompasses over 3,000 distinct UMLS
semantic categories in the biomedical area. Based on PubMed abstracts, MedMentions is a sizable, high-quality dataset that is
frequently used for biomedical named item recognition and linking activities. This dataset is very useful for medical text mining
because of its comprehensive annotations, which are mapped to concepts in the UMLS Metathesaurus. The collection provides
extensive biomedical coverage across a variety of categories, including diseases, medications, genes, anatomical words, and
clinical procedures. Abstract IDs, abstract texts, abstract titles, annotated UMLS Concept Unique IDs (CUlIs), semantic type
codes, and character spans for each annotation are all included in their organized format, which makes concept-level analysis
accurate and insightful.

Preprocessing Steps

Step 1: Tokenization

Each abstract is split into individual tokens (words or terms) using standard biomedical tokenization techniques. Special attention
is paid to preserve important clinical terms such as hyphenated compounds (e.g., “COVID-19”), abbreviations, and chemical
names. Break down raw abstracts into individual meaningful units called tokens, while preserving the structure of complex
biomedical terms.

Standard Tokenization, Given an abstract € R™ , where:
A={cy,Cq ., Cn}

Apply a tokenization function t to segment into tokens:
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T(4) =T = {tptz; e tk}, t; € Tokens

However, biomedical tokenization modifies T to preserve:

e Hyphenated terms (e.g., "COVID-19", "TNF-alpha")
e Abbreviations (e.g., "HbAlc", "ECG", "MRI")
o Greek symbols and numeric compounds (e.g., “IL-6”, “5-HT”)

Biomedical Regex Pattern (Custom Tokenizer)

To preserve domain-specific tokens, apply regex patterns such as:
pattern =r"[ A-Za-z0-9\-1++(?:/[A-Za-z0-9\-]+)*|[ A-Za-z]+"

e Captures: COVID-19, TNF-alpha, IL-6, 5-HT, BRCA1/2
e Rejects: punctuation and common split errors in standard tokenizers

Final biomedical tokenization function:
T = 1p;,(4) = {t;lmatch(t;, regexyi,)}

Step 2: Stopword Removal

Common English stopwords (e.g., “and,” “the,” “is”) and high-frequency non-informative biomedical terms are removed. A
domain-specific stopword list is used to retain only the medically relevant tokens. Let:

® Sy : general English stopwords (e.g., “is”, “the”, “was”

CEINNT LR I3

® Sy : domain-specific biomedical stopwords (e.g., “study”, “group”, “observed”, “significant’)

Then:
§= Sgen U Shio

Given token list T={t t2,...,t%}, apply:
Tfiltered = {ti ET|t; & S}

Step 3: UMLS Concept Linking

Tokens and phrases are linked to UMLS Concept Unique Identifiers (CUIs) using tools like MetaMap, QuickUMLS, or
ScispaCy with UMLS linking. This step transforms surface-level terms into semantically grounded concepts, enabling more
robust topic modeling. Synonyms and variant forms are normalized to their base concept, reducing redundancy in vocabulary.

Transform raw biomedical tokens and phrases into UMLS Concept Unique Identifiers (CUIs) to:

Ground lexical items in a shared ontology.
Normalize synonyms and variants.
Reduce sparsity in the feature space.
Enable semantic-aware topic modeling.

A. Concept Candidate Generation: Let the tokenized document be,
T = {ty, ty, ..., ti}

It define candidate phrases P (n-grams):
N .
P=Upi{ttive, i tisn-D| 1< i<k —n+1}

Tools like MetaMap, QuickUMLS, or ScispaCy’s Entity Linker scan these phrases p;€P and match them to UMLS entries.

B. Similarity Scoring & Candidate Selection
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Each phrase p; is compared against UMLS terms using a string similarity function 8(pj,u), e.g.: Jaccard similarity, Levenshtein
distance and Cosine similarity on character n-grams. Let:
CUI(p;) =arg arg max,cy6(p;, ¢)

Where, U is the set of UMLS terms. CUI(pj) is the top match (or set of top matches) for phrase p;. For example, the phrase "heart
attack" maps to:
CUI("heartattack")=C0027051

C. Synonym and Variant Normalization

For every matched concept ceC with variants:
Variants(c) = {v1,V3, o, Vm}

Replace all vi€Variants(c) with the canonical concept representation c. This ensures:
V.€ document,if t € Variants(c) >t « ¢

This step drastically reduces vocabulary size and sparsity.
D. Optional: CUI Embedding (Concept Embedding)

Use pretrained concept embeddings such as cui2vec:
Embed(CUI;) = e¢; € R4

These embeddings capture semantic similarity in vector space:

€heart attack ~ emyocardial infarction
The final document representation can be:

e Bag-of-CUIs
e TF-IDF of CUIs
e Embedded CUIs (for deep models)

Resulting Transformation,

Original Phrase Mapped Canonical Term
Text CUIL

“heart heart C0027051 Myocardial
attack” attack Infarction

“heart cardiac C0018802 Cardiac Arrest
attack” arrest

“high BP” | high BP C0020538 Hypertension

Step 4: Temporal Slicing

The dataset is divided into temporal segments based on the publication year of each abstract. This time-based partitioning
facilitates the use of Dynamic Topic Modeling, allowing the model to track topic transitions over time. Each time slice repre sents
a distinct time step in the DTM-RNNLSTM pipeline, maintaining the chronological flow of information.

Divide the dataset into chronologically ordered time slices based on metadata (e.g., publication year), enabling: Topic evolution
tracking (via DTM) and Sequential learning across time (via RNN-LSTM)

Define Time Attribute
Let the dataset D consist of biomedical abstracts with metadata:

D = {(x;, ¥},
Where, xi: i-th abstract/document and y;€Z: Time label (e.g., publication year)

Partition Documents into Time Slices
Genetics and Molecular Research 25 (1): gmr24124
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Let T={ty,t,....tx} be the sorted set of unique time labels (e.g., publication years). For each time t €T, define the time slice
Sk as: S = {x;|y; = ;. }

These results in K temporally ordered slices: S = {S1,55, ..., Sk}

C. Corpus Restructuring

Each slice Skbecomes a sub-corpus used independently by the DTM and sequentially by the RNN/LSTM. Let, 8x: Document-
topic distributions learned from DTM for time slice Sk. ¢x: Topic-word distributions for Sk . Then the full temporal sequence
becomes:

0 =1{6,0, ..,0}

¢ ={¢0, .0}
Where, 0 DeR? : Topic distribution for document deS and ¢«@€RY : Word distribution for topic z in time k.
Input to DTM-RNNLSTM Pipeline

e Each 0k becomes the input for time step k of the RNN-LSTM model:
Input Sequence = 0 ={0,,6,,...,0,}

This facilitates modeling of temporal dependencies across evolving topics.

Example: Suppose have Abstracts from 2015 to 2020 and Dataset is split by year. Then:
T={2015,2016,2017,2018,2019,2020}

For each year ti , it generate Si , and compute 0,9y , feeding them into:

e DTM for each Sk

e RNN-LSTM for ® as a sequence

The preprocessing workflow for the proposed DTM-RNNLSTM architecture involves several domain-specific and temporal-
aware stages that enhance both the semantic quality and temporal resolution of biomedical text data, particularly in the context of
topic modeling for medical literature, Figure 2. The process begins with tokenization, where each medical abstract is segment ed
into individual lexical units (tokens) using biomedical-specific tokenizers. These tokenizers are designed to retain critical clinical
constructs such as hyphenated compounds (e.g., “COVID-19”), domain-specific abbreviations (e.g., “COPD”), and chemical or
drug-related entities, ensuring that the linguistic granularity of biomedical text is preserved for downstream semantic analysis.
Following tokenization, stopword removal is applied. Standard English stopwords (e.g., “and”, “the”, “is”) are filtered out
alongside high-frequency but semantically uninformative biomedical terms.

This phase reduces noise and improves topic model focus by preventing the loss of significant clinical tokens through the use of a

domain-specific stopword list customized for biomedical literature. The text is then semantically enhanced through UMLS
concept linkage. Raw tokens and multi-word phrases are mapped to Concept Unique Identifiers (CUIs) in the Unified Medical
Language System (UMLS) using programs such as MetaMap, QuickUMLS, or ScispaCy with UMLS linkage. This lessens
vocabulary sparsity and increases the robustness of taught themes by enabling the conversion of synonyms and lexical variants
into unified concepts (for example, "heart attack" and "myocardial infarction" map to the same CUI). Pre-trained vectors like
cui2vec or BioConceptVec, which capture semantic similarity in a dense numerical space for integration with deep learning
models, can optionally be used to integrate these CUIs.
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Start: Raw Medical Abstracts

v

Tokenization
T
Preserve Compounds, Abbreviations, Chemical
names
\ 4
Stopword removal
|

Remove common and biomedical-specific non-

informative terms

¢

UMLS Concept Linking

[
Use MetaMan / OuickUMLS / ScisnaCv
v
Synonym Normalization
I

Normalize to canonical CUITs

Semantic Filtering

T
Filter for relevant types: Disease, Procedure, Anatomy

v

Concept Embedding

Use cui2vec or BioConceptVec

4

Temporal Slicing
T

Partition by publication year / admission date

v

Time-Stamped Corpus Ready for DTM

Figure 2: Preprocessing workflow for the proposed DTM-RNNLSTM

Additionally, a semantic type filtering step is used to guarantee clinical relevance. By using the UMLS Semantic Network
classifications, this eliminates CUIs that do not fall into medically relevant categories, such as illnesses, anatomical features,
symptoms, or procedures. Lastly, the entire corpus is divided into sections using temporal slicing, which is based on chronol ogical
markers like the year of publication or the date of patient admission. As a result, a temporally ordered collection of document
batches—also known as time slices—is produced, each of which represents a moment in time in the biological domain. In order
for the Dynamic Topic Model (DTM) component to learn and change subjects over time, these slices are essential for feeding into
it. In order to allow more cohesive longitudinal topic transitions and maintain the organic chronological flow of medical
knowledge growth, each temporal slice functions as an input timestep to the DTM-RNNLSTM architecture. Overall, this
preprocessing pipeline creates a high-quality, time-aware input appropriate for sophisticated topic modeling and sequence learning
frameworks in medical natural language processing by closely integrating biomedical semantics with temporal dynamics. In order
to provide a strong basis for training the DTM-RNNLSTM model, this preprocessing pipeline makes sure that the input corpus is
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both chronologically structured and semantically enriched. In the biomedical field, it is anticipated that the application of UMLS
ideas in particular will enhance topic coherence and interpretability.

EXPERIMENTAL RESULT AND DISCUSSION

Experimental Setup

The experimental environment for this study consists of a Windows 10 operating system with 16 GB of RAM, an Intel Core i7
processor, a 512 GB SSD, and an NVIDIA GeForce GTX 1660 Ti GPU. Python 3.10 is used as the primary programming
language, along with machine learning libraries such as Scikit-learn, Gensim, TensorFlow, and PyTorch. The MedMentions
dataset, a large corpus annotated with Unified Medical Language System (UMLS) concepts, is utilized for the evaluation of topic
modeling algorithms. Comparative experiments are conducted across four models: Non-negative Matrix Factorization (NMF),
Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), Dynamic Topic Model (DTM), and the proposed DTM-RNNLSTM
architecture. Evaluation metrics include Coherence Score (C_v), Perplexity, Precision, Recall, F1-Score, and Accuracy, providing
a comprehensive assessment of topic quality and document classification capabilities. Experiments are conducted for three
different topic settings: 25, 50, and 100 topics (t =25, t =50, t = 100).

For NMF, hyperparameters are configured with the number of components (topics) set to 25, 50, and 100, using the coordinate
descent solver, an initialization method of 'nndsvd', maximum iterations of 500, and a regularization parameter (alpha) set to 0.1.
The L1 ratio for sparsity control is fixed at 0.5, with a random state of 42 to ensure reproducibility. For GSDMM, the number of
clusters is initialized to 25, 50, and 100 accordingly. The hyperparameters alpha and beta, which control document-cluster and
word-cluster distributions, are set to 0.1 and 0.1 respectively. The maximum number of iterations is set to 30, with early stopping
if convergence criteria are met. For DTM, the data is first temporally segmented by publication year. The number of topics is set
to 25, 50, and 100 for different experiments. The document-topic Dirichlet prior (alpha) and topic-word Dirichlet prior (eta) are
set to 0.01. Variational inference is used with 1000 maximum EM iterations. The DTM model is implemented using the original
DTM C++ code (wrapped in Python) compiled with Eigen3, with a batch size of 64 documents per slice.

For the proposed DTM-RNNLSTM architecture, the DTM outputs (document-topic distributions per time slice) are fed into an
LSTM network. The LSTM is configured with 2 hidden layers, each with 256 hidden units. A dropout rate of 0.3 is applied
between layers to prevent overfitting. The optimizer used is Adam with an initial learning rate of 0.001, and the model is trained
for 20 epochs with a batch size of 32. Gradient clipping is applied at a norm of 5.0 to stabilize training. The softmax layer is
employed at the output for reweighting topic distributions. Additionally, temporal coherence regularization is incorporated during
training by minimizing the cosine distance between sequential hidden states. All experiments are repeated five times under each
configuration, and the mean values of the evaluation metrics are reported to ensure statistical robustness. Random seeds are
consistently set across libraries (NumPy, TensorFlow, PyTorch) to guarantee reproducibility.

Performance Analysis

Coherence: In this study, the performance of topic modeling methods—Non-negative Matrix Factorization (NMF), Gibbs
Sampling Dirichlet Multinomial Mixture (GSDMM), Dynamic Topic Model (DTM), and the proposed DTM-RNNLSTM—is
evaluated using the Coherence Score (C_v), which quantifies the degree of semantic similarity between high-scoring words within
each topic. Coherence is a widely accepted metric for assessing the interpretability and quality of topics, especially in biomedical
domain texts where semantic consistency is critical.

The C, Coherence Score is computed based on a sliding window, a one-set segmentation of the top words, and an indirect cosine
similarity measure between word pairs, defined as:

Wi Wi
1
CoherenceC, = W Z Z cosine_similarity (V(w;), V(Wj ))
i=1 j=i+1

Where W is the set of top N words for a topic, and V(w) denotes the context vector of word www based on a co-occurrence matrix
or external corpus like MedMentions vocabulary.

During experimentation, coherence values are calculated across 3 different topic numbers, T = 65, 125, 175, to assess scalability
and model robustness with increasing topic granularity. Higher coherence values imply better semantic consistency across top
topic words. When compared to conventional models, the suggested DTM-RNNLSTM architecture continuously obtains greater
coherence scores. There are two main reasons for this exceptional performance: (1) Topic evolution over time is captured by
temporal modeling using DTM, which prevents sudden topic drifts; (2) Latent topic transitions are contextually retained throu gh
sequential smoothing using LSTM, which removes fragmentation brought on by irregular or sparse biological data. The model
improves coherence by more precisely refining topic-word associations through re-estimating topic distributions using LSTM's
final hidden states. On the other hand, NMF lacks the ability to model time, even if it uses matrix factorization to offer simple
semantic categories. As a cluster-oriented model, GSDMM does a good job of capturing local document clusters, but it has
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trouble understanding theme patterns that change over time. Topic dynamics are captured by DTM alone, however it may be
hampered by noise in brief clinical abstracts or small datasets. Thus, by combining deep temporal learning and probabilistic topic
evolution, the combination of DTM and RNNLSTM offers a strong answer.

T -
{|EE T = 125
-

Cehwrence

SOMM oT™

G &0 Prapeset DTM.RUNLSTM
Topic Modeing Methods

Figure 3: Coherence Results (C,) at Different Topic Numbers (T = 65, 125, 175)

Figure 3 shown, the proposed DTM-RNNLSTM outperforms the baseline methods significantly, At T = 65, the proposed DTM-
RNNLSTM improves coherence by approximately 21.7% over DTM, 44% over GSDMM, and 62% over NMF. At T = 125, the
DTM-RNNLSTM maintains stability, whereas traditional models show slight degradation due to topic fragmentation. At T =175,
despite the higher topic granularity (which typically reduces coherence), the DTM-RNNLSTM still outperforms other methods,
showcasing its robustness in handling a finer division of medical concepts. This consistent trend across different topic sizes
clearly demonstrates the advantage of incorporating deep sequential learning into dynamic topic models for large biomedical
datasets.

Perplexity: Perplexity is one of the most widely used statistical measures to evaluate probabilistic topic models. It quantifies
how well a probabilistic model (e.g., DTM, GSDMM) predicts a set of unseen documents. A lower perplexity value indicates that
the model better fits the data, producing more "confident" predictions about the unseen data distribution. The perplexity is
expressed as:

Titetl log p(w@)

[Dtest|
d=1 Nqa

Perplexity (D est) = exp <—
Where, Diss = set of unseen documents, wq = sequence of words in document d, p(wq) = probability of document d under the
model, Ng = number of words in document d.

Thus, perplexity essentially measures the "surprise" of the model when encountering new  data:
Lower perplexity = better generalization.

By design, NMF is not probabilistic. Although reconstructed matrices can be used to calculate approximate perplexity, their
performance is typically inferior due to the absence of explicit word likelihood modeling. GSDMM: Initially created for brief
texts, GSDMM suffers with topic granularity (higher T) but exhibits mild confusion on bigger biological datasets. DTM: Clearly
simulates how subjects change over time. When modeling complicated temporal semantic shifts over extended sequences, as is
common in biomedical data such as MedMentions, DTM performs poorly, yet it does rather well on perplexity. The suggested
Using an RNN-LSTM architecture, DTM-RNNLSTM introduces temporal sequence modeling that captures long-range
dependencies between changing topics across document timelines. Particularly when growing the number of topics, the LSTM's
hidden states allow for improved estimate of document-topic distributions, which reduces perplexity.

Figure 4 demonstrate the DTM-RNNLSTM significantly reduces perplexity by learning smoother topic transitions and predicting
next word distributions more accurately over evolving biomedical terminologies.
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Figure 4: Perplexity Results (Lower is Better) at Different Topic Numbers (T = 65, 125, 175)

At T = 65, the proposed DTM-RNNLSTM model achieves about 16.7% lower perplexity compared to DTM, 30.7% lower than
GSDMM, and 40% lower than NMF. At T =125 and T = 175, although perplexity slightly increases (as expected due to topic
fragmentation), DTM-RNNLSTM maintains the lowest perplexity compared to all other methods. GSDMM shows significant
degradation at higher T because it is not built for modeling fine-grained, evolving medical topics. NMF, not being a true
generative model, consistently shows higher perplexity, validating that it struggles with accurate likelihood estimation. DTM
maintains reasonable performance but starts degrading as the topic granularity and temporal sequence length increase. Overall,
DTM-RNNLSTM ensures better topic-word distribution estimation across document timeframes, thus significantly improving
model generalization.

Precision, Recall, F1-Score, and Accuracy

In topic modeling evaluation (especially for classification-based applications like biomedical concept clustering), supervised
metrics like Precision, Recall, F1-Score, and Accuracy are adapted to measure how correctly words or documents are assigned to
their dominant topics.

Precision (Positive Predictive Value): Precision= TP / (TP+FP)

Recall (Sensitivity): Recall= TP /(TP+FN)

F1-Score (Harmonic Mean of Precision and Recall): F — score = 2 x (Precision x Recall) /( Precision + Recall)
Accuracy: Accuracy= (TP+TN) /( TP+FP+FN+TN )

Where, TP = True Positives (Correct topic assignments), TN = True Negatives, FP = False Positives, FN = False Negatives.
Significant differences in the behavior, advantages, and disadvantages of the various topic modeling methodologies are reveal ed
by the comparison study. A straightforward and interpretable matrix factorization technique, non-negative matrix factorization
(NMF) is both computationally effective and simple to comprehend. But in complex datasets, the lack of a strong topic-document
association mechanism results in noisier topic labels and less semantic alignment. Strong grouping skills are demonstrated by the
Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM) model, especially for extremely brief biological abstracts or snippets.
However, when the number of topics (T) rises, its performance degrades, leading to topic fragmentation and imprecise clusters.
By capturing the shifting distribution of words across time slices, the Dynamic Topic Model (DTM) provides notable benefits for
modeling the temporal evolution of themes across sequential data. Nevertheless, DTM's capacity to sustain consistent topic
transitions in dynamic biomedical corpora is constrained by its poor memory retention across lengthy subject sequences.

The suggested DTM-RNNLSTM architecture, on the other hand, overcomes these drawbacks by incorporating deep sequential
learning into dynamic topic modeling. Because DTM-RNNLSTM can simulate Temporal Sequential Context—where Long Short-
Term Memory (LSTM) units can recall previous subject states—it is technically superior. For longitudinal text corpora, this
improves word-topic assignments' accuracy and consistency over time. Furthermore, the layered RNN-LSTM layers efficiently
capture semantic drifts and subtle topic transitions, which are typical in biomedical domains like MedMentions, through Deep
Feature Extraction. Additionally, by lowering false positives and false negatives in topic prediction, the DTM-RNNLSTM
framework improves generalization by increasing the true positive rate across assessments.

As seen in Figure 5-7, The DTM-RNNLSTM continuously beats the NMF, GSDMM, and conventional DTM models in terms of
precision, recall, F1-score, and accuracy as a result of these architectural improvements. The model's scalability and robustness for
intricate, real-world biomedical text datasets are demonstrated by its ability to sustain good performance even when the number of
themes increases (T = 65, 125, 175). The suggested DTM-RNNLSTM architecture continuously leads across all four assessment
metrics—Precision, Recall, F1-Score, and Accuracy—for all topic numbers (T = 65, 125, 175), according to key findings from the
experimental results. It is noteworthy that when the number of topics increases, the performance disparity between DTM -
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RNNLSTM and other models widens, suggesting that DTM-RNNLSTM is more robust and scalable when handling topic spaces
with greater complexity. However, as the number of topics increases, Non-negative Matrix Factorization (NMF) exhibits a rapid
decline in performance. This is mainly because, at higher T values, the matrix approximation becomes less coherent for capturing
fine-grained biological themes. Similar to this, the Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM) model exhibits a
significant decline in performance at higher topic counts (T = 175), primarily because it is unable to sustain coherent clusters as
topic granularity increases. However, it performs fairly well at lower topic counts (T = 65). In comparison to the suggested DTM-
RNNLSTM technique, the Dynamic Topic Model (DTM) exhibits strong Precision, Recall, and F1-Score while maintaining
comparatively consistent performance. However, its efficacy is limited due to its inability to learn sequential dependencies over an
extended period of time.
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NMF struggles with reduced recall and overall accuracy, while displaying moderate precision and F1-score in metric-specific
observations. GSDMM exhibits good precision in the beginning, but as topic counts increase, recall and F1-Score drastically
decline. Despite maintaining a good balance across all measures, DTM is unable to match DTM-RNNLSTM's superior
performance. DTM-RNNLSTM demonstrates its technical strength by achieving the highest results in Precision, Recall, F1-Score,
and Accuracy. By retaining high Precision, strong Recall, high F1-Score, and resilient Accuracy as the topic modeling problem
becomes more complex, the suggested DTM-RNNLSTM architecture performs noticeably better than conventional topic
modeling techniques. It is ideal for complicated biomedical datasets like MedMentions because of its capacity to capture long-
term dependencies and temporal semantic drifts.

CONCLUSION

A thorough examination of topic modeling approaches using the biomedical MedMentions dataset was carried out in this research.
The suggested DTM-RNNLSTM continuously outperforms conventional models, especially as the number of topics rises,
according to evaluation across Coherence, Perplexity, Precision, Recall, F1-Score, and Accuracy metrics. The DTM-RNNLSTM
represents semantic drifts in biological ideas, captures temporal sequential relationships, and generalizes more successfully across
complex and changing topic structures. Due to their intrinsic constraints in modeling fine-grained biological semantics, NMF and
GSDMM work rather well at lower topic complexities but become much less successful at higher topic counts. Although it doesn't
have the memory capacity to capture long-term transitions as well as DTM-RNNLSTM, traditional DTM maintains steady
behavior. All things considered, the findings confirm that deep sequential architecture, when combined with topic models,
provides better topic assignment quality, particularly in fields with rich and dynamic conceptual spaces like biomedical literature.

Future research approaches include improving the model even more by incorporating attention processes to dynamically focus on
important topic transitions throughout time, building upon the encouraging outcomes of DTM-RNNLSTM. Richer semantic
capture and even better temporal modeling may result from replacing LSTM units with Transformer-based designs. Another
approach is domain-specific pre-training, which improves topic coherence and interpretability in highly specialized biomedical
corpora by using biomedical language models like BioBERT or Clinical BERT as the embedding layer prior to topic modeling.
Distributed training techniques could also be used to investigate scalability to very big datasets and real-time developing streams
(like clinical notes or biomedical papers). Lastly, the generalizability and robustness of the suggested DTM -RNNLSTM system
beyond the MedMentions benchmark may be confirmed by a more thorough assessment across additional biomedical datasets and
multilingual corpora.
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