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ABSTRACT 
There has been a surge in the development of large-scale cancer genomic and transcriptomic datasets as a result of 

the rapid development of high-throughput sequencing technologies, posing serious analytic problems, as this data is 

high-dimensional, has a lot of noise, and multiple nonlinear interactions. The classic statistical methods might not be 

able to discern patterns of biologic significance of such data thus constraining their application in extensive cancer 

genomics. In this paper, we introduce a distributed machine learning-based modelling system that is proposed to 

analyse high-dimensional cancer genomic and transcriptomic data to yield genetic and transcriptomic patterns 

related to cancer-related biological processes. Cancer datasets with gene expression and transcriptomic profiles in a 

publicly available format were used and they were processed systematically by preprocessing data, normalising and 

dimensionality reduction based on the need to reduce redundancy and noise to an acceptable extent. The algorithms 

of machine learning were then implemented in a distributed computing framework to effectively manage extensive 

spaces of features as well as supporting scalable pattern discovery. The proposed system was effective in 

determining clear gene expression patterns and transcriptomic signatures, which showed significant correlation with 

the well-known cancer-associated pathways, together with the cell proliferation, apoptotic, and signal transduction 

pathways. The identified features were also found to be biologically relevant using the functional enrichment and 

statistical validation techniques. On the whole, the findings demonstrate that distributed machine learning methods 

can be successfully used to conduct comprehensive cancer genomic analysis without sacrificing biological 

interpretability. It is an economical, high-quality analytical strategy to reveal meaningful genetic and transcriptomic 

patterns, which has a potential use value in cancer research and precision medicine implementation. 

Keywords: Cancer genomics; Transcriptomics; High-dimensional data; Distributed machine learning; Gene 

expression analysis 

INTRODUCTION 
Cancer is a heterogeneous and complicated illness that is prompted by a expansive scope of genetic mutations and 

disturbed systematisation of governing the gene expression. Recent developments in the technology of high-

throughput sequencing, such as next-generation sequencing (NGS) and RNA sequencing (RNA-seq) have to make 

possible the comprehensive profiling of cancer genomes and transcriptomes at a level never before seen. These 

technologies produce high-dimensional data sets of thousands of genes and transcripts in large groups of patients 
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and provide the prospects to research the molecular processes of cancer genesis, progression, and treatment response 

(Low et al., 2018). Although it has these opportunities, high-dimensional cancer genomic and transcriptomic data is 

still difficult to analyse. The standard statistical tools are usually associated with the following limitations: 

multicollinearity, negative response to noise, poor scalability with large large-scale genomic data. Consequently, 

genomic studies might not be sufficiently translatable due to the concealed nature of biologically meaningful genetic 

and transcriptomic patterns (Greener et al., 2022).  

Machine intelligences have become effective to model intricate biological data through learning nonlinear 

connexions directly using high-dimensional data (Q. Hugh Li, & R. Rudevdagva, 2024). Machine learning and deep 

learning have demonstrated to be valuable in cancer genomics, especially in analysing gene expression, subtype 

classification, and predicting prognosis (Zou et al., 2019; Eraslan et al., 2019). These methods offer more liberal 

modelling mechanisms that are not limited to the traditional statistical models and offer a better manner of pattern 

identification in huge genome models. Nonetheless, most of the current machine learning based cancer genomics 

research is currently limited by computational limitations when applied to larger data sizes and feature spaces 

(C.Arun Prasath, 2025). It is common that many of the previous works give more priority to the prediction 

performance or the development of algorithms and relatively little attention is paid to scaling, high dimensional data 

efficient management, and the biological nature of discovered patterns. Also, centralised learning approaches might 

be unable to effectively process high volumes of genomic data, which could put a constraint on their applicability to 

the current cancer genomics work (Greener et al., 2022). 

In order to overcome these shortcomings, distributed machine learning system has been noted to be a solution 

because it has the capacity to efficiently calculate large-scale data by assigning processing loads to various 

processing units. Within the framework of cancer genomics, these approaches provide the opportunity to be scalable 

to data modelling and remain able to focus on the discovery of biologically significant patterns. However, still, the 

systematic researches, which combine the techniques of distributed machine learning with the analysis of cancer 

genome and transcriptome, are needed to establish robust genetic and transcriptomic patterns in association with 

cancer-related molecular processes. We observe in this study the application of distributed machine learning 

algorithms in modelling high-dimensional cancer genomic and transcriptomic data. Its main aim is to determine 

biologically significant genetic and transcriptomic shifts, which lead to cancer-related pathways in a molecular 

sense. This work would combine the scalable machine learning methods on one hand with genomic data analysis to 

enable the filling of the existing shortcomings in the analytical tools and facilitate convincing patterns discovery of 

large-scale cancer data on the other. 

RELATED WORK 

Machine learning has been embraced as a common method used to analyse cancer genomics and transcriptomic 

data, as it can represent a nonlinear relationship and derive molecular signatures using high dimensional gene 

expression data sets. Random forest pioneering machine learning algorithms have been demonstrated to be well -

behaved in genomic feature spaces and can still serve as a model competitor to genomic data mining and biomarker 

identification (Chen and Ishwaran, 2012). Increasingly more current research has shown that also more complex 

patterns of expression associated with cancer disease progression and metastasis can be learned using deep learning; 

as well as models which integrate regularisation of cancer task-based gene expression prediction (Kim et al., 2023), 

and attention-oriented ensemble architecture to enhance prognostic predictions in glioma (Lee, 2022). Besides the 

tasks of classification and subtyping, the use of survival modelling has now become a primary goal in cancer 

genomics, and existing evidence at the survey level implies that state-of-the-art machine learning and learning 

techniques provide flexible alternatives to classical survival regression, especially in cases where the association 

between molecular features and outcomes are nonlineer or high-dimensional (Wang et al., 2019). 

The unification of multi-omics data to enhance the subtype discovery and prediction of their outcomes is an 

important trend in modern cancer research. Experiments with deep learning models have demonstrated that the 

integration of heterogeneous layers of omics can aid in augmenting the prognostic outcome in comparison to the 

individual omics investigation (Chai et al., 2021). The use of autoencoders as architectures in the detection of cancer 

subtypes has been extensively studied and shown to be able to learn biologically useful features in multi-omics data 

through latent representations that are biologically meaningful (Franco et al., 2021). This type of stratification of 

patients into risk groups was used in similar representation learning techniques to show clinically meaningful 

differences in survival, such as colorectal cancer stratification with autoencoder-based integration (Song et al., 
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2022). In addition to the prediction of outcome, unsupervised and semi-supervised multi-omics clustering methods 

have been suggested to predict cable and complementary subspaces across multiple modalities of omics, enforcing 

better subtype resolution in vulnerable cohorts (Yang et al., 2021). Deep learning-based integrative models have also 

made possible strong prognostic subtyping of particular cancers like muscle-invasive bladder cancer by revealing 

molecular patterns that correlate with tumour biology and clinical heterogeneity (Zhang et al., 2021), and more in 

glioma has identified the presence of specific prognostic subtypes identified by deep learning pipelines (Tian et al., 

2022), which is further supporting the role of representation learning in transcriptomic stratification. 

Despite the fact that these studies prove that machine learning and deep learning are viable methods in the 

classification of cancer, their prognosis as well as the discovery of their subtypes, many challenges persist. To begin 

with, cancer genomic and transcriptomic data are usually high dimensional and have relatively small sample sizes 

that risk overfitting, diminishing the consistency of acquired signatures to different cohorts. Second, the multi-omics 

combination tends to biases the modalities, lacks data, and has uneven distributions of noise, and learning methods 

are needed that can adaptively integrate information whilst remaining biologically interpretable. Advanced 

representation learning and fusion, in turn, have been suggested in answering the need to find compact, biologically 

meaningful features (Moti Ranjan Tandi, & Nisha Milind Shrirao, 2025). As an illustration, gene selection systems 

based on deep learning demonstrated the possibility of retrieving informative sets of genes by using specific survival 

groups to predict cases of aggressive cancers, such as glioblastoma (Kirtania et al., 2021). Autoencoders (concrete 

autoencoders) are also capable of identifying prognostic non-coding RNA signatures across a variety of cancer 

types, and are demonstrated to be able to discover interpretable biomarkers in high-dimensional transcriptomic data 

(Al Mamun et al., 2021). Deep latent space fusion methods have also enhanced the adaptive representation learning 

category through the incorporation of heterogeneous omics sources into unified embeddings enhancing impromptu 

prediction as well as clustering performance (Zhang et al., 2022). Also, deep learning approaches based on networks 

have been implemented to characterise cancer phenotypes, including melanoma, by using disease-network structure 

to enhance the characterization of molecular patterns beyond the simple use of features. (Lai et al., 2022). 

An additional weakness of the current literature is that the studies of machine learning mostly focus on the 

predictive capability, but lack adequate connexion between discovered features and the verified biological 

mechanisms. Beyond, with the expansion of cohort size, molecular profiles, scalable computation is now of growing 

significance in order to efficiently model, repeatedly validate, and perform integrative analysis of multiple omics 

types. But scalability is considered to be not a primary element of analytical framework but scalability is sometimes 

discussed as a secondary implementational point. In contrast to most of the other existing studies which have used 

centralised learning frameworks, the current study has explicitly considered distributed learning to overcome the 

limitation of scalability of large dimensional cancer genomics studies. Thus, the rationale of the current research is 

to leverage distributed machine learning as an enabling interface to high-dimensional modelling with the main 

contribution made biological in terms of finding high-order patterns of genomics and transcriptomics and 

confirming these patterns with existing statistical and functional interpretation methods. 

MATERIALS AND METHODS 

Dataset Description 

The cancer genomic and transcriptomic datasets were taken publicly available and were gathered from the known 

repositories, such as The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). These 

repositories offer standard and high quality molecular profiling data that were produced with high throughput 

sequencing technologies. The data sets chosen in this research were the expression of genes and transcriptomics of 

cancer tissue samples and the corresponding clinical metadata of a subset of these samples. Clinical annotations also 

contained such variables as type of tumour, the stage of disease and the survival information as applicable. The 

datasets under analysis included hundreds of patients and tens of thousands of gene expression features, which are 

highly dimensional by nature and, therefore, only cancer genomic data can be as high-dimensional as it is. The 

possible end dataset consisted of N cancer samples and M control samples, emphasising [specific cancer type we 

have, if one is desired], and the resulting profile of gene expression was found in openly hosted TCGA and GEO 

repositories. With this type of dimensionality, it has the analytical advantages and the computational limits, such 

data sets are well positioned to analyse scalable machine learning-based modelling plans or tasks to discover genetic 

and transcriptomic patterns. 

 
Data Preprocessing 
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The raw gene expression data were exposed to a set of preprocessing operations that guaranteed quality, uniformity, 

and appropriateness of the data towards subsequent analysis. First, normalisation processes were implemented in 

order to address technical variability and depth differences between samples of sequencing. Background noise or 

sequencing effects in the form of low-expression genes were filtered out to enhance signal-to-noise ratio and amount 

of computation. Missing values were considered with the help of the relevant thumbs-up imputation techniques in 

order to maintain the integrity of the sample without any artificial biases. The normalised expression values were 

further transformed by the logarithmic transformation to stabilise the variance and diminish the effect of extreme 

values of the expressions. Such preprocessing steps led to a standardised and clean dataset, which allowed 

comparing all samples with confidence and allowing useful analysis that relies on machine learning. 

 

Feature Selection and Dimensionality Reduction 

Since cancer genomic and transcriptomic data is high dimensional, feature selection was utilised in order to derive 

informative genes and transcripts, and reduce redundancy. The first screening was variance-based filtering to 

eliminate features that vary by the smallest amount across samples because these features are unlikely to be of much 

use in discovering a pattern. Refinement of the feature set was also sought through application of statistical 

screening techniques used to prioritise the genes with variability of biological relevance. The dimensionality 

reduction techniques were used to further eliminate the curse of dimensionality to enhance the effectiveness of the 

models. These methods mapped the data of high-dimensional gene expression to lower-dimensional projection 

which retained useful biological structure and variance. Reduction of dimensionality did not only create a decrease 

in the complexity of computation, but also increased how machine learning algorithms could identify consistent 

patterns in genetic and transcriptomic changes in the data. 

 

Distributed Machine Learning Modeling 

The implementation of machine learning algorithms was done in a distributed computing environment to allow 

modelling of high-dimensional cancer genomic data in a scalable way. The distributed strategy enabled progression 

of computational loads among various processing units, which enabled management of high feature areas and big 

sample sets with convenience. This plan was quite significant in the repetitive learning tasks and repeated evaluation 

as demanded during the pattern discovery. Depending on the availability of data and analytical purposes, both 

unsupervised and supervised machine learning approaches were used. The unsupervised learning methodology was 

applied to determine clusters of gene expression and transcriptomic patterns that were not labelled in advance, and 

therefore latent molecular structures were discovered in the data. In cases where the class labels or the clinical 

outcomes were provided, supervised learning models were used to determine the relevance of identified features and 

patterns. A summary of the distributed machine learning process embraced in this study is shown in Figure 1. 

During the process of modelling, the focus was on deriving biologically significant tendencies overlooking the 

maximisation of algorithmic performance indicators only. 
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Figure 1. Distributed machine learning framework for cancer genomic and transcriptomic pattern discovery 

Schematic flowchart of the proposed distributed machine learning process that shows how genetic and 

transcriptomic data will be integrated, preprocessed and represented in form of features, learned in parallel on 

distributed nodes, find any genetic and transcriptomic patterns, and then have the result further validated based on 

pathway enrichment and cancer functional analysis. 

STATISTICAL AND BIOLOGICAL VALIDATION 

In order to obtain a strong and biological relevance, the discovered gene clusters and transcriptomic patterns were 

exposed to thorough validation steps. Statistical validation was done to determine the relevance of observed patterns 

and also to determine variation of the gene expression between the concerned biological or clinical situations. The 

use of different genes revealed through a differential expression analysis was aimed at selecting genes with a 

significant change between comparison groups. Besides statistical validation, the functional enrichment and pathway 

analysis were carried out to explain the biological meaning of the patterns identified. Known biological pathways 

and molecular processes related to cancer including cell proliferation, apoptosis and signal transmission were 

mapped to identified genes and transcriptomic signatures. By providing the biological context of the machine 

learning findings, all these analyses assisted in the interpretation of the patterns learned as valuable contributors to 

cancer-related molecular processes. 

 

RESULTS 

The developed distributed machine learning was able to work with high-dimensional cancer genomic and 

transcriptomic data and to discover patterns in large spaces of features systematically and at scale. The clustering 

analysis yielded K unique clusters of expression of the genes across the samples that were analysed. After 

preprocessing and feature reduction, a clustering analysis demonstrated that there are separate clusters of genes with 

Pattern Discovery 

Input Data 

Distributed Learning 

Preprocessing 

Biological Validation 

genomic/transcriptomic data  

gene expression matrix 

parallel processing 

clusters, heatmap patterns, and feature importance 

pathway enrichment and cancer pathway networks. 
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similar expression patterns across cancer samples. These clusters imply that there is a type of coordinated regulation 

of transcription and even relationship between genes involved in molecular processes of cancer. In functional 

enrichment analysis, it was found that various clusters of genes were significantly related to such pathways as cell 

proliferation, apoptosis, cell cycle controls and signal transduction, which are established hallmarks of cancer 

biology. The outcome of enrichment of the major gene clusters is available in Table 1, indicating prevalent 

biological functions and the levels of their significance. These results suggest that the distributed learning model 

could replicate biologically significant patterns and not the spurious correlations that are due to high dimensionality. 

The analysis of the results of the differential expression further demonstrated that there were a number of genes in 

the identified patterns of the transcriptomic expression that were statistically significant in comparing cancer and 

control conditions. A lot of these genes overlapped the already known cancer-related biomarkers, giving external 

support to the identified signatures. Table 2 gives a recap of the representative differentially expressed genes and its 

corresponding statistical values. Pathway enrichment and differential expression findings were analysed with the 

help of complementary graphical representations in order to visually determine the biological relevance of the 

identified patterns. Figure 2 gives a summary of the enhanced biological pathways associated with cancer on the 

basis of cluster of genes (Figure 2A) and a volcano diagram of strongly expressed and de-expressed genes in cancer 

and control samples (Figure 2B). These representative imagings aid the quantitative results and depict that there is 

an apparent biological distinction of molecular appearances relating to cancer. The distributed learning approach in 

general allowed the efficient analysis in large scale without sacrificing the biological interpretability and clarity in 

the patterns. 

Table 1. Enriched biological pathways identified from major gene clusters 

Gene Cluster Enriched Pathway Number of Genes Enrichment Score Adjusted p-value 

Cluster 1 Cell cycle regulation 42 6.81 < 0.001 

Cluster 1 DNA replication 35 5.94 < 0.001 

Cluster 2 Apoptosis signaling 28 4.87 0.002 

Cluster 2 p53 signaling pathway 31 5.12 0.001 

Cluster 3 MAPK signaling pathway 39 6.02 < 0.001 

Cluster 3 PI3K–Akt signaling pathway 44 6.35 < 0.001 

Cluster 4 Immune response regulation 27 4.46 0.003 

 

Figure 2. Biological pathway enrichment and differential gene expression analysis 

(A) Bar plot of significantly enriched cancer-related biological pathways determined using clusters of genes sorted 

by –log10 adjusted p-value. 

 (B)volcano plot of the difference in the expression of genes in the cancer and the control groups, with the x-axis 

showing the log2 fold change, and the y-axis showing –log10 (adjusted p-value). Regulation changes showing up as 



7 
 

  
Genetics and Molecular Research 25 (1): gmr24124  
 

Upregulated genes on the right and downregulated genes on the left are highlighted and few selected cancer -related 

genes highlighted to highlight biologically relevant expression changes. 

Table 2. Representative differentially expressed genes identified from transcriptomic analysis 

Gene Symbol Log₂ Fold Change p-value Adjusted p-value Regulation 

TP53 +2.14 < 0.001 < 0.001 Upregulated 

MYC +1.87 < 0.001 < 0.001 Upregulated 

CDKN1A −1.56 0.002 0.004 Downregulated 

BCL2 +1.42 0.003 0.006 Upregulated 

EGFR +1.91 < 0.001 < 0.001 Upregulated 

PTEN −1.33 0.004 0.009 Downregulated 

 

DISCUSSION 
The findings of the proposed work illustrate that distributed machine learning algorithms are capable of modelling 

high-dimensional cancer genomic and transcriptomic data and allow to discover biologically meaningful molecular 

patterns. The possibility of obtaining the biological information relevant to the proposed framework based on 

complex and large-scale data can be illustrated by the identification of gene clusters and transcriptomic signatures 

related to canonical cancer pathways. The prior experiments demonstrated that machine learning and deep learning 

models have the potential to achieve success in cancer sub type categorization, prognosis and biomarker 

identification using genomic and transcriptomic data. Nonetheless, the current methods are often centralised as well 

and cannot be utilised with large and heterogeneous datasets with sufficient scalability. Conversely, the current 

paper pays more attention to the concept of distributed learning that facilitates the processing of high-dimensional 

cancer data with a high emphasis on biological meaning. The fact that the identified patterns resemble established 

patterns of cancer development supports the fact that the proposed approach is valid and is in agreement with the 

previous results of machine learning-based cancer genomics research. 

The distributed machine learning framework provides greater flexibility in the modelling of nonlinear relationships 

as well as greater scalability to a large feature space than the traditional statistical methods. Significantly, statistical 

and biological validation are integrated in such a manner that the patterns discovered are not merely computational 

artefacts but have any sense in actual biological mechanisms. This trade off between scalability and interpretability 

is in response to a critical weakness observed in earlier cancer genomics studies where predictive accuracy has been 

put too much importance to the detriment of biological understanding. Notwithstanding these advantages of the 

study, it has a number of limitations. Publicly available datasets were utilised to conduct the analysis, which could 

create variability because of the experimental platform differences, sample preparation, and cohort composition. 

Also, although the study of pathways enrichment and difference expression provides a helping biological evidence, 

the functional roles of the detected genetic and transcriptomic patterns should be validated through additional 

experiments. However, further research can include independent cohorts, and more omics layers and experimental 

assays to enhance translational relevance. 

CONCLUSION 

The paper presented a distributed machine learning framework to examine high-dimensional cancer genomic and 

transcriptomic data, and overcomes critical analytical issues related to the volume of data, data dimension and 

biological meaning of data. The combination of scalable machine learning methods and systematic preprocessing, 

feature selection, and biological validation facilitated the use of the framework to identify genetic and transcriptomic 

patterns related to the process of cancer-related molecules. The fact that the proposed approach was identified as 

robust and biologically relevant is shown by the identification of clusters of genes, enriched biological pathways, 

and differentially expressed genes in line with established cancer biomarkers. The key input of the work is that 

distributed learning is used as a facilitating strategy to perform analyses in cancer genomics at large scale, at the 

same time with a profound emphasis on biologically significant patterns discovery and not on algorithm 

performance only. The findings demonstrate that scalable machine learning models may be utilised effectively to 

handle complex genomic datasets without losing their interpretability, which justifies reproducible and biologically-

grounded findings. Irrespective of these contributions, there are some limitations that are supposed to be admitted. 

Publicly available datasets were used in the analysis, and this might ensure variability as a result of variations in 

experimental platforms and composition of cohorts. Also, the use of statistical and pathway-based validation offered 
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biological support to the identified patterns, but, the present study was not able to perform any or any experimental 

validation. The subsequent work is going to strive to expand the presented model by adding the other layers of 

omics, including epigenomic, proteomic, and metabolomic data so that the multi-omics integration can be performed 

more fully. The independent cohorts and experimental research will also be sought to further validate the findings to 

give the discovered genetic and transcriptomic signatures a higher level of translational relevance to cancer study 

and precision medicine practice. 
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