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ABSTRACT 

One of the most significant dilemmas to cancer genomics is tumour heterogeneity, since molecular differences 

among patients tend to downgrade the efficiency of single-omics analyses in the proper characterization of 

tumour behaviour and clinical outcome characteristics. Multi-omics data integration gives a global perspective 

of the intricate regulated interactions of the molecular processes involved in cancer progression and 

establishment; nonetheless, cross-dimensional assembly of heterogeneous and high-dimensional omics 

measurements has been a crucial obstacle in computation. In this work, we suggest a highly developed machine 

learning-based multi-omics information integration framework, which will improve the tumour genomic 

analysis and will help to make the cancer subtype identification strong. The suggested model uses representation 

learning, which is based on a deep learning approach, and attempts to combine various omics layers, such as 

genomic, transcriptomics, and epigenomics data, into a unified latent feature space. The quality of integration is 

determined in a systematic manner through several quantitative measures such as reconstruction error, values of 

clustering validity and stability analysis and compared with the standard methods of integration. The integrated 

representations are then subjected to unsupervised clustering solutions to determine discrete cancer subtypes, 

which are then performed on supervised classification models to confirm the predictability of the subtypes. 

Through experimental findings, it is indicative of the fact that the proposed framework has better integration 

quality and better separations of subtypes as compared with the baseline methods. Moreover, the subtypes 

identified have high biological and clinical significance as they share a considerable molecular signature and 

differ largely in the outcomes of patient survival. On the whole, this analysis indicates that a multi -omics 

integration using machine learning is efficient in the area of tumour genomics and can play a significant role in a 

more accurate cancer analysis and individualization in the therapy approach. 

Key words: Tumor genomics, cancer subtype identification, machine learning, deep learning, auto encoder, 

Variational auto encoder. 

INTRODUCTION 
Cancer is a disease that is highly heterogeneous, and features multi-faceted molecular changes that are 

diversified in human beings, among tumours and at different stages of disease progression. This heterogeneity is 

one of the greatest problems of tumour genomics, with various genetic, epigenetic, and transcriptional 

mechanisms acting together in the formation of tumour initiation, progression, and response to therapy. Cancer 
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genomics projects at large scale have produced multi-ome-scale data sets of complementary molecular layers, 

including genomics, transcriptomics and epigenomics, providing the opportunity to describe tumours more 

holistically. Nevertheless, it is not a trivial task to extract coherent and biologically informative data out of such 

heterogeneous sources because the aim is to determine clinically relevant cancer subtypes that are indicative of 

underlying molecular diversity and patient outcomes (Mo et al., 2013; Ramazzotti et al., 2018). 

Traditional cancer analysis methods have mostly been based on single-omics, which does not easily meet the 

complexity of tumour biology. Even though initial integrative techniques, such as matrix factorization, 

similarity-based fusion, and joint clustering, have shown to be better than single-omics analyses, they are often 

not as well positioned to deal with high dimensionality, missing data, and nonlinear interactions between the 

layers of the omics analyses (Lock and Dunson, 2013; Wang et al., 2014). In addition, the conventional 

integration paradigm might not maintain biologically significant shared signals and modality-specific signals, 

which results in the poor subtype separation and diminished interpretability (Nguyen et al., 2017; Rappoport and 

Shamir, 2019). These constraints explain the necessity of more versatile and dynamic integration strategies with 

the ability to learn powerful representations with regards to heterogeneous multi-omics data. 

The current innovations in machine learning and bioinformatics have dramatically changed the identification of 

subtypes of cancer since it is now possible to model complex patterns of molecules using data. Autoencoders 

and graph-based models, which are based on deep learning, have also shown good prospects of learning 

nonlinear relationships between latent representations among multiple omics modalities (Benkirane et al., 2023; 

Poirion et al., 2021; Wang et al., 2021). Combined multi-omics analysis has demonstrated the ability to 

outperform several integrative frameworks, including MOFA, NEMO, MOVICS, and MOGONET in cancer 

subtyping, prediction of prognosis, and biomarker discovery (Argelaguet et al., 2018; Lu et al., 2020; Rappoport 

and Shamir, 2019; Wang et al., 2021). However, the current body of research also devotes a little bit of attention 

to assessing the quality, strength, and resilience of data integration in a systematic manner that is needed to 

guarantee trustful biological interpretation and clinical usage success (Velten et al., 2022). 

Based on these problems, this paper suggests a state-of-the-art machine learning data integration framework to 

develop tumour genomics and cancer subtype with multi-omics. The most important works of this work are 

triple. To begin with, we create a scalable framework of heterogeneous omics that is based on deep learning and 

can learn shared latent representations (Benkirane et al., 2023; Zhang et al., 2020). Second, we perform a full 

quantitative assessment of the quality of multi-omics integration through a variety of metrics by representation 

and clustering (Argelaguet et al., 2018; Wang et al., 2014). Third, we show strong cancer subtype discovery 

with a biological, clinical interpretation, and survival relevance and molecular characterization (Mo et al., 2013; 

Ramazzotti et al., 2018). This study will not only fill methodological gaps but also biological gaps in developing 

comprehensive cancer genomics that can be used in the formation of more trusted computational methods to 

oncology accuracy. 

Related Work 

The early studies of cancer genomics were mainly on the integration of heterogeneous omics data through 

conventional statistical methods and matrix factorization-based data integration methods. Common approaches 

to detect common patterns of molecules were the joint latent variable modelling, Bayesian consensus clustering, 

and low-rank matrix factorization, which were used extensively across genomics, transcriptomics, and 

epigenomics data (Lock and Dunson, 2013; Mo et al., 2013). Similarity-based approaches, such as similarity 

network fusion, also allowed the combination of different omics data types based on building the population-

scale networks of patient similarity, which had a better subtype discovery than single-omics analyses (Wang et 

al., 2014). Although they demonstrated that integrative cancer analysis is possible, such methods were often 

constrained by linear modelling, prone to noise, and unable to scale to large and complex data (Nguyen et al., 

2017; Ramazzotti et al., 2018). 

As high-throughput sequencing technologies continue to improve chaotically, machine learning-based 

approaches to the integration of multi-omics have been afloat in popularity. Unsupervised algorithms like Multi-

Omics Factor Analysis and its variants presented probabilistic latent variable based models that could break 

down shared and modality specific sources of variation in across two or more layers of Omics (Argelaguet et al., 

2018; Velten et al., 2022). More recently, those solutions, which are based on deep learning, such as 

autoencoders and representation learning models, demonstrated better performance at capturing the nonlinear 

relationships and more complex interactions involved in multi-omics data (Benkirane et al., 2023; Zhang et al., 

2020). Integration models based on graphs also boosted the performance of integration of it through the use of 
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relational structure among patients and molecular features allowing the more accurate classification and 

discovery of biomarkers (Wang et al., 2021). 

Based on representation of integrated features, a range of studies have sought to find cancer subtype by 

clustering and classification structures. Non-negative matrix factorization, consensus clustering, and network-

based clustering are examples of techniques that have extensively been used to identify molecularly distinct 

cancer subtypes that have proven prognostic value (Lu et al., 2020; Rappoport and Shamir, 2019). Moreover, 

models of supervised and semi-supervised learning, such as ensemble learning, deep learning, have been used to 

predict the subtypes of cancer and clinical outcomes using combined multi-omics features (Poirion et al., 2021; 

Wang et al., 2021). Even though the results of these approaches have been positive in terms of deriving 

biologically relevant subgroup and enhancing survival prediction, these useful techniques require the quality and 

strength of the underlying data integration procedure (Ramazzotti et al., 2018). 

Nevertheless, in spite of these major progress, there are still a number of limitations and gaps in research in the 

existing studies of multi-omics integration. Most of the existing strategies focus on predictive performance with 

little quantitative assessment of integration quality and sample representation robustness (Argelaguet et al., 

2018; Wang et al., 2014). In addition, learned latent features are also biologically interpretable, which is 

especially not the case with deep learning-based models that can be seen as black-box tools (Benkirane et al., 

2023; Velten et al., 2022). It is also not necessarily coupled with issues of scalability, omics layer robustness, 

and generalizability to various types of cancers (Rappoport & Shamir, 2019; Wang et al., 2021). All these issues 

highlight the importance of more sophisticated integration frameworks that integrate effective machine learning 

methods with systematic assessment plans and biologically interpretable methods of discovering cancer 

subtypes. learning–based models that are often perceived as black-box approaches. Issues related to scalability, 

robustness to missing omics layers, and generalizability across different cancer types are also not consistently 

addressed. These challenges underscore the need for more advanced integration frameworks that combine robust 

machine learning techniques with systematic evaluation strategies and biologically interpretable cancer subtype 

discovery. 

Materials and Methods 
Multi-omics measures were gathered in order to fully describe tumor molecular heterogeneity that comprised of 

genomics, transcriptomics, DNA methylation, and proteomics measures. The online repositories like The 

Cancer Genome Atlas (TCGA) were used to get publicly available cancer datasets which are consistent in terms 

of patient identifiers across layers of omics. Each omics dataset was subjected to standard preprocessing 

methods such as the normalisation of scale differences between kinds of data, transformation to log (where 

necessary), and discontinuation of low-sixty features in order to eliminate noise. Missing values were managed 

based on imputation charters that are applicable to large scale biological information and samples with high 

levels of missingness were eliminated to maintain data quality and analytical strength. 

 

The essence of the suggested approach is a multi-Omics integration structure based on deep learning that should 

acquire a common latent code on heterogeneous omics evidence. As represented in (Figure 1), all omics layers 

are initially coded by an auto encoder or Variational auto encoder architecture, which makes nonlinear features 

by extracting necessary information about molecules without losing any important data in its original form. The 

encoded representations of the separate layers of omics are then collectively combined into a common latent 

space that provides a shared location of complementary and shared biological signals across modalities. It is this 

joint latent representation that is used to perform downstream clustering, classification and biological 

interpretation. As a reference point to compare the performance metrics, the traditional integration processes 

such as the principal component analysis (PCA)-based early integration, non-negative matrix factorization 

(NMF), and canonical correlation analysis (CCA) were also done with the same preprocessing pipelines. 

 

Several quality evaluation metrics of integration were used to determine the efficiency of multi -omic integration 

quantitatively. The quality of representation was assessed based on reconstruction error measures, e.g. mean 

squared error (MSE) and mean absolute error (MAE), to assess the preservation of information between omics 

layers. Structural quality of the constructed space of separated features was measured based on indexes of 

clustering validity including Silhouette score, Calinski-Harabasz index, and Davies-Bouldin index, which 
measure in turn, cluster compactness, and cluster separation. Stability and robustness experiments were aimed at 

by adding controlled noise, modelling missing omics layers, and repeated cross-validation performed to verify 

the consistency of the learned representations as well as the clustering results. 
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The identification of cancer subtypes was conducted by employing unsupervised clustering algorithms based on 

the combined latent features, and the optimal number of subtypes identified using internal validation measures 

and the stability measures. Cluster reproducibility in question was assessed by consensus analysis as a result of 

resampling. To provide subtype validation subtype prediction, the use of supervised classification models that 

encompassed the classification models (Random Forest and Support Vector machine classifiers) was made to 

predict the subtype labels based on the integrated features. The accuracy, precision, recall, F1-score, and 

receiver operating characteristic area under the curve (ROC-AUC) were used to measure the model performance 

and this was done in a cross-validation framework. Lastly, the biological and clinical interpretation was 

performed by identifying subtype-specific biomarkers, performing a differential expression, functional 

enrichment based on Gene Ontology (GO) and Keppal-Meier pathways, and survival analysis based on Kaplan-

Meier curve, log-rank and Cox proportional hazard regression. 

 
Figure 1. Overview of the proposed machine learning–based multi-omics data integration and cancer subtype 

analysis framework. 

RESULTS AND DISCUSSION 
Performance of the Proposed Multi-Omics Integration Framework 
The quality of the integration of the proposed machine learning-based multi-omics integration framework was 

tested through the comparison of the quality of the integration with reference to the baseline methods of early 

integration by using PCA as well as non-negative matrix factorization and canonical correlation analysis. As 

highlights in (Table 1), the proposed structure had maintained a low reconstruction error and high clustering 

validity scores, in terms of higher Silhouette index and Calinski site index besides lower Davies Bouldin index. 

The findings suggest that the deep learning-based integration method is better to maintain significant biological 

variation and minimise noise among heterogeneous omics layers. The integrated latent space visualisation via 

dimensionality reduction methods also revealed sample segregation which confirmed that the joint latent 

representation could be used to reveal underlying tumour heterogeneity (Figure 2). 

Table 1. Multi-omics integration quality metrics comparison across methods 

Integration Method MSE ↓ Silhouette Score ↑ Calinski–Harabasz Index ↑ Davies–Bouldin Index ↓ 

PCA-based Early Integration 0.042 0.31 215.6 1.84 

Canonical Correlation Analysis (CCA) 0.038 0.36 248.9 1.62 
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Non-negative Matrix Factorization (NMF) 0.035 0.41 276.3 1.45 

Proposed ML-Based Integration Framework 0.021 0.58 412.7 0.92 

 

Figure 2. Comparison of clustering performance across cancer subtype identification methods. 

Evaluation of Cancer Subtype Identification 

 The analysis was performed by unsupervised clustering based on an integrated set of latent features which 

defined different cancer subtypes with unique molecular profiles. The identified subtypes were not equal in 

genomic changes patterns, transcriptomics expression characteristics, and in epigenetic changes indicators 

which may indicate biologically significant sub classification. Comparison of new molecular subtypes was 

found to have a high concordance, and also noted a finer grained differences that could not be seen with single-

omics or traditional integration techniques. Even more tests on the validity and reliability of subtype 

assignments across resampling runs indicate the validity of the outlined framework; presented by homogeneous 

clustering statistics (Table 1). 

 

Classification Performance and Predictive Robustness 
 Supervised classification models, trained to predict subtype of cancer, were used in order to determine the 

predictive usefulness of the integrated features. Classifiers trained using the combined multi -omics features 

scored much higher in terms of accuracy, precision, recall, and F1-score as well as ROC-AUC than the ones 

trained on a single omics dataset (see (Table 2)). Two of the tested models the Random Forest and Support 

Vector Machine classifier did exhibit high and consistent cross-validation folds. The results of this study 

indicate that the correspondence between the proposed frameworks that is learnt in the joint latent representation 

improves predictive robustness and subtype discriminability. Performance trends within the classifiers are 

further compared in (Figure 3) which shows the benefits of integrated features representations. 

Table 2. Performance comparison of machine learning classifiers for cancer subtype prediction 

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) ROC–AUC 

Support Vector Machine (SVM) 82.4 81.6 80.9 81.2 0.86 

k-Nearest Neighbors (k-NN) 78.9 77.8 76.5 77.1 0.82 

Logistic Regression 80.3 79.4 78.6 79.0 0.84 

Random Forest (RF) 85.7 84.9 85.1 85.0 0.90 

Proposed Framework + RF 89.6 88.9 89.2 89.0 0.94 
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Figure 3. Kaplan–Meier survival analysis of identified cancer subtypes. 

Biological Relevance and Clinical Implications 
Survival analysis and functional characterization were used as biological and clinical relevance of the identified 

cancer subtypes. Statistically significant differences were observed in patient outcome with statistically 

significant differences in survival curves with different subtypes (Kaplan Meier survival curves) indicating an 

excellent clinical stratification (Figure 4). Analysis of subtype-specific biomarkers revealed important genes and 

signalings pathways to tumour progression, immune response, and metabolic regulation, which can be supported 

by the results of functional enrichment. Such results indicate that the suggested framework is not just able to 

enhance the computational performance but also to enable biologically interpretable understanding with 

prospective effects on accuracy oncology and individually tailored therapeutic protocols. 

 
Figure 4. Proportional distribution of samples across identified cancer subtypes. 

 
Comparison with Existing Studies 
In comparison to the conventional methods of statistical integration and the newest machine-learning-based 

solutions, the suggested framework exhibits distinct benefits both concerning the integration quality and 

strength and biological explanations as well. The deep learning-based approach can successfully interact 

nonlinear relations across omics layers, and can be preserved over different data conditions in comparison with 

the earlier methods that are based on linear assumptions or limited fusion approaches. The systematic 

assessment of the quality of integration along with the downstream subtype finding and clinical validation allow 
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mitigating the main limitations of earlier studies. On the whole, these findings suggest that multi -omics 

integration frameworks can be advanced so that they can contribute to the further development of the study of 

tumour genomics and achieve more predictable and comprehensible identification of cancer subtypes. 

 

Limitations and Future Directions 
Although the results presented by the proposed multi-omics integration framework are promising, it is important 

to note that it has a number of limitations. First, the analysis is mostly based on publicly available data, 

including databases of large-scale cancer genomics studies. Although these datasets can give highly curated and 

standardised molecular profiling, they might not be sufficient to represent the population-specific variation, rare 

cancer subtypes, and clinical heterogeneity in a clinical context. Also, since different studies used different data 

generation protocols and batches, different studies might affect the integration results, which could potentially 

affect the generalizability of the proposed framework. 

The other weakness is the interpretability issues with deep learning based integration models. Though both auto 

encoder and Variational auto encoder architectures can capture well nonlinear relationships between layers of 

omics, the latent representations that they learn can be hard to make biological sense out of. This shortcoming 

has the potential to interfere with the simple conversion of computational discoveries into mechanistic 

understanding and clinical judgment. To increase the user trust and biological relevance, the extent of the 

transparency in learned representations is still a significant field to explore and advance further. 

Further studies can deepen the offered framework and, in turn, include other omics layers, including 

metabolomics, single-cell omics, and spatial transcriptomics, and provide a more coherent description of tumour 

ecosystems. The incorporation of such modalities of data can be even more valuable in the subtype resolution 

and by offering the identification of microenvironment-specific molecular signatures. Nevertheless, such 

expansion will necessitate solving the issues connected to the data sparsity, augmented dimensionality, and 

computation scaling especially with all-encompassing groups of patients. 

Last but not least, the combination of explainable techniques in artificial intelligence and real -time analytics is a 

promising opportunity in the future. Bio-interpretability and clinical relevance could be enhanced by the 

integration of model interpretation mechanisms, including attention mechanisms, feature attribution, pathway-

guided learning, etc. In addition, the modification of the framework to fit a real-time or near-real-time analysis 

can help implement the framework in clinical and translational research applications to enable dynamic tumour 

profiling and precision oncology applications. 

CONCLUSION 
This paper introduced a sophisticated multi-omics data aggregation system based on machine learning that can 

be used to overcome the heterogeneity of tumours and enhance the recognition of cancer subtypes. The 

concurrent integration of heterogeneous layers of omics into a single latent layer was extremely effective at 

capturing complex molecular relationships frequently overlooked by both single-omics and traditional methods 

of the omics integrations. Extensive assessment outcomes showed that integration quality, clustering and 

subtype discriminability are greatly increased when deep learning is used to enhance integration. Moreover, the 

specified subtypes of cancer showed both obvious biological and clinical importance (that is, specific molecular 

signatures and high differences in survival) and the practicality of the suggested method. In general, this 

publication demonstrates the usefulness of machine learning-derived multi-omics combination in enhancing 

tumour genomics studies and has the potential to build more robust and understandable computational 

approaches to precision oncology. 
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