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ABSTRACT

One of the most significant dilemmas to cancer genomics is tumour heterogeneity, since molecular differences
among patients tend to downgrade the efficiency of single-omics analyses in the proper characterization of
tumour behaviour and clinical outcome characteristics. Multi-omics data integration gives a global perspective
of the intricate regulated interactions of the molecular processes involved in cancer progression and
establishment; nonetheless, cross-dimensional assembly of heterogeneous and high-dimensional omics
measurements has been a crucial obstacle in computation. In this work, we suggest a highly developed machine
learning-based multi-omics information integration framework, which will improve the tumour genomic
analysis and will help to make the cancer subtype identification strong. The suggested model uses representation
learning, which is based on a deep learning approach, and attempts to combine various omics layers, such as
genomic, transcriptomics, and epigenomics data, into a unified latent feature space. The quality of integration is
determined in a systematic manner through several quantitative measures such as reconstruction error, values of
clustering validity and stability analysis and compared with the standard methods of integration. The integrated
representations are then subjected to unsupervised clustering solutions to determine discrete cancer subtypes,
which are then performed on supervised classification models to confirm the predictability of the subtypes.
Through experimental findings, it is indicative of the fact that the proposed framework has better integration
quality and better separations of subtypes as compared with the baseline methods. Moreover, the subtypes
identified have high biological and clinical significance as they share a considerable molecular signature and
differ largely in the outcomes of patient survival. On the whole, this analysis indicates that a multi-omics
integration using machine learning is efficient in the area of tumour genomics and can play a significant role in a
more accurate cancer analysis and individualization in the therapy approach.

Key words: Tumor genomics, cancer subtype identification, machine learning, deep learning, auto encoder,
Variational auto encoder.

INTRODUCTION

Cancer is a disease that is highly heterogeneous, and features multi-faceted molecular changes that are
diversified in human beings, among tumours and at different stages of disease progression. This heterogeneity is
one of the greatest problems of tumour genomics, with various genetic, epigenetic, and transcriptional
mechanisms acting together in the formation of tumour initiation, progression, and response to therapy. Cancer
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genomics projects at large scale have produced multi-ome-scale data sets of complementary molecular layers,
including genomics, transcriptomics and epigenomics, providing the opportunity to describe tumours more
holistically. Nevertheless, it is not a trivial task to extract coherent and biologically informative data out of such
heterogeneous sources because the aim is to determine clinically relevant cancer subtypes that are indicative of
underlying molecular diversity and patient outcomes (Mo et al., 2013; Ramazzotti et al., 2018).

Traditional cancer analysis methods have mostly been based on single-omics, which does not easily meet the
complexity of tumour biology. Even though initial integrative techniques, such as matrix factorization,
similarity-based fusion, and joint clustering, have shown to be better than single-omics analyses, they are often
not as well positioned to deal with high dimensionality, missing data, and nonlinear interactions between the
layers of the omics analyses (Lock and Dunson, 2013; Wang et al., 2014). In addition, the conventional
integration paradigm might not maintain biologically significant shared signals and modality-specific signals,
which results in the poor subtype separation and diminished interpretability (Nguyen et al., 2017; Rappoport and
Shamir, 2019). These constraints explain the necessity of more versatile and dynamic integration strategies with
the ability to learn powerful representations with regards to heterogeneous multi-omics data.

The current innovations in machine learning and bioinformatics have dramatically changed the identification of
subtypes of cancer since it is now possible to model complex patterns of molecules using data. Autoencoders
and graph-based models, which are based on deep learning, have also shown good prospects of learning
nonlinear relationships between latent representations among multiple omics modalities (Benkirane et al., 2023;
Poirion et al., 2021; Wang et al., 2021). Combined multi-omics analysis has demonstrated the ability to
outperform several integrative frameworks, including MOFA, NEMO, MOVICS, and MOGONET in cancer
subtyping, prediction of prognosis, and biomarker discovery (Argelaguet et al., 2018; Lu et al., 2020; Rappoport
and Shamir, 2019; Wang et al., 2021). However, the current body of research also devotes a little bit of attention
to assessing the quality, strength, and resilience of data integration in a systematic manner that is needed to
guarantee trustful biological interpretation and clinical usage success (Velten et al., 2022).

Based on these problems, this paper suggests a state-of-the-art machine learning data integration framework to
develop tumour genomics and cancer subtype with multi-omics. The most important works of this work are
triple. To begin with, we create a scalable framework of heterogeneous omics that is based on deep learning and
can learn shared latent representations (Benkirane et al., 2023; Zhang et al., 2020). Second, we perform a full
quantitative assessment of the quality of multi-omics integration through a variety of metrics by representation
and clustering (Argelaguet et al., 2018; Wang et al., 2014). Third, we show strong cancer subtype discovery
with a biological, clinical interpretation, and survival relevance and molecular characterization (Mo et al., 2013;
Ramazzotti et al., 2018). This study will not only fill methodological gaps but also biological gaps in developing
comprehensive cancer genomics that can be used in the formation of more trusted computational methods to
oncology accuracy.

Related Work

The early studies of cancer genomics were mainly on the integration of heterogeneous omics data through
conventional statistical methods and matrix factorization-based data integration methods. Common approaches
to detect common patterns of molecules were the joint latent variable modelling, Bayesian consensus clustering,
and low-rank matrix factorization, which were used extensively across genomics, transcriptomics, and
epigenomics data (Lock and Dunson, 2013; Mo et al., 2013). Similarity-based approaches, such as similarity
network fusion, also allowed the combination of different omics data types based on building the population-
scale networks of patient similarity, which had a better subtype discovery than single-omics analyses (Wang et
al., 2014). Although they demonstrated that integrative cancer analysis is possible, such methods were often
constrained by linear modelling, prone to noise, and unable to scale to large and complex data (Nguyen et al.,
2017; Ramazzotti et al., 2018).

As high-throughput sequencing technologies continue to improve chaotically, machine learning-based
approaches to the integration of multi-omics have been afloat in popularity. Unsupervised algorithms like Multi-
Omics Factor Analysis and its variants presented probabilistic latent variable based models that could break
down shared and modality specific sources of variation in across two or more layers of Omics (Argelaguet et al.,
2018; Velten et al., 2022). More recently, those solutions, which are based on deep learning, such as
autoencoders and representation learning models, demonstrated better performance at capturing the nonlinear
relationships and more complex interactions involved in multi-omics data (Benkirane et al., 2023; Zhang et al.,
2020). Integration models based on graphs also boosted the performance of integration of it through the use of
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relational structure among patients and molecular features allowing the more accurate classification and
discovery of biomarkers (Wang et al., 2021).

Based on representation of integrated features, a range of studies have sought to find cancer subtype by
clustering and classification structures. Non-negative matrix factorization, consensus clustering, and network-
based clustering are examples of techniques that have extensively been used to identify molecularly distinct
cancer subtypes that have proven prognostic value (Lu et al., 2020; Rappoport and Shamir, 2019). Moreover,
models of supervised and semi-supervised learning, such as ensemble learning, deep learning, have been used to
predict the subtypes of cancer and clinical outcomes using combined multi-omics features (Poirion et al., 2021;
Wang et al., 2021). Even though the results of these approaches have been positive in terms of deriving
biologically relevant subgroup and enhancing survival prediction, these useful techniques require the quality and
strength of the underlying data integration procedure (Ramazzotti et al., 2018).

Nevertheless, in spite of these major progress, there are still a number of limitations and gaps in research in the
existing studies of multi-omics integration. Most of the existing strategies focus on predictive performance with
little quantitative assessment of integration quality and sample representation robustness (Argelaguet et al.,
2018; Wang et al., 2014). In addition, learned latent features are also biologically interpretable, which is
especially not the case with deep learning-based models that can be seen as black-box tools (Benkirane et al.,
2023; Velten et al., 2022). It is also not necessarily coupled with issues of scalability, omics layer robustness,
and generalizability to various types of cancers (Rappoport & Shamir, 2019; Wang et al., 2021). All these issues
highlight the importance of more sophisticated integration frameworks that integrate effective machine learning
methods with systematic assessment plans and biologically interpretable methods of discovering cancer
subtypes. learning—based models that are often perceived as black-box approaches. Issues related to scalability,
robustness to missing omics layers, and generalizability across different cancer types are also not consistently
addressed. These challenges underscore the need for more advanced integration frameworks that combine robust
machine learning techniques with systematic evaluation strategies and biologically interpretable cancer subtype
discovery.

Materials and Methods

Multi-omics measures were gathered in order to fully describe tumor molecular heterogeneity that comprised of
genomics, transcriptomics, DNA methylation, and proteomics measures. The online repositories like The
Cancer Genome Atlas (TCGA) were used to get publicly available cancer datasets which are consistent in terms
of patient identifiers across layers of omics. Each omics dataset was subjected to standard preprocessing
methods such as the normalisation of scale differences between kinds of data, transformation to log (where
necessary), and discontinuation of low-sixty features in order to eliminate noise. Missing values were managed
based on imputation charters that are applicable to large scale biological information and samples with high
levels of missingness were eliminated to maintain data quality and analytical strength.

The essence of the suggested approach is a multi-Omics integration structure based on deep learning that should
acquire a common latent code on heterogeneous omics evidence. As represented in (Figure 1), all omics layers
are initially coded by an auto encoder or Variational auto encoder architecture, which makes nonlinear features
by extracting necessary information about molecules without losing any important data in its original form. The
encoded representations of the separate layers of omics are then collectively combined into a common latent
space that provides a shared location of complementary and shared biological signals across modalities. It is this
joint latent representation that is used to perform downstream clustering, classification and biological
interpretation. As a reference point to compare the performance metrics, the traditional integration processes
such as the principal component analysis (PCA)-based early integration, non-negative matrix factorization
(NMF), and canonical correlation analysis (CCA) were also done with the same preprocessing pipelines.

Several quality evaluation metrics of integration were used to determine the efficiency of multi-omic integration
quantitatively. The quality of representation was assessed based on reconstruction error measures, €.g. mean
squared error (MSE) and mean absolute error (MAE), to assess the preservation of information between omics
layers. Structural quality of the constructed space of separated features was measured based on indexes of
clustering validity including Silhouette score, Calinski-Harabasz index, and Davies-Bouldin index, which
measure in turn, cluster compactness, and cluster separation. Stability and robustness experiments were aimed at
by adding controlled noise, modelling missing omics layers, and repeated cross-validation performed to verify
the consistency of the learned representations as well as the clustering results.
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The identification of cancer subtypes was conducted by employing unsupervised clustering algorithms based on
the combined latent features, and the optimal number of subtypes identified using internal validation measures
and the stability measures. Cluster reproducibility in question was assessed by consensus analysis as a result of
resampling. To provide subtype validation subtype prediction, the use of supervised classification models that
encompassed the classification models (Random Forest and Support Vector machine classifiers) was made to
predict the subtype labels based on the integrated features. The accuracy, precision, recall, F1l-score, and
receiver operating characteristic area under the curve (ROC-AUC) were used to measure the model performance
and this was done in a cross-validation framework. Lastly, the biological and clinical interpretation was
performed by identifying subtype-specific biomarkers, performing a differential expression, functional
enrichment based on Gene Ontology (GO) and Keppal-Meier pathways, and survival analysis based on Kaplan-

Meier curve, log-rank and Cox proportional hazard regression.
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Figure 1. Overview of the proposed machine learning—based multi-omics data integration and cancer subtype
analysis framework.

RESULTS AND DISCUSSION

Performance of the Proposed Multi-Omics Integration Framework

The quality of the integration of the proposed machine learning-based multi-omics integration framework was
tested through the comparison of the quality of the integration with reference to the baseline methods of early
integration by using PCA as well as non-negative matrix factorization and canonical correlation analysis. As
highlights in (Table 1), the proposed structure had maintained a low reconstruction error and high clustering
validity scores, in terms of higher Silhouette index and Calinski site index besides lower Davies Bouldin index.
The findings suggest that the deep learning-based integration method is better to maintain significant biological
variation and minimise noise among heterogeneous omics layers. The integrated latent space visualisation via
dimensionality reduction methods also revealed sample segregation which confirmed that the joint latent
representation could be used to reveal underlying tumour heterogeneity (Figure 2).

Table 1. Multi-omics integration quality metrics comparison across methods

Integration Method MSE | | Silhouette Score 1 | Calinski-Harabasz Index 1 | Davies—Bouldin Index |
PCA-based Early Integration 0.042 0.31 215.6 1.84
Canonical Correlation Analysis (CCA) 0.038 0.36 248.9 1.62
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Figure 2. Comparison of clustering performance across cancer subtype identification methods.

Evaluation of Cancer Subtype Identification

The analysis was performed by unsupervised clustering based on an integrated set of latent features which
defined different cancer subtypes with unique molecular profiles. The identified subtypes were not equal in
genomic changes patterns, transcriptomics expression characteristics, and in epigenetic changes indicators
which may indicate biologically significant sub classification. Comparison of new molecular subtypes was
found to have a high concordance, and also noted a finer grained differences that could not be seen with single-
omics or traditional integration techniques. Even more tests on the validity and reliability of subtype
assignments across resampling runs indicate the validity of the outlined framework; presented by homogeneous
clustering statistics (Table 1).

Classification Performance and Predictive Robustness

Supervised classification models, trained to predict subtype of cancer, were used in order to determine the
predictive usefulness of the integrated features. Classifiers trained using the combined multi-omics features
scored much higher in terms of accuracy, precision, recall, and F1-score as well as ROC-AUC than the ones
trained on a single omics dataset (see (Table 2)). Two of the tested models the Random Forest and Support
Vector Machine classifier did exhibit high and consistent cross-validation folds. The results of this study
indicate that the correspondence between the proposed frameworks that is learnt in the joint latent representation
improves predictive robustness and subtype discriminability. Performance trends within the classifiers are
further compared in (Figure 3) which shows the benefits of integrated features representations.

Table 2. Performance comparison of machine learning classifiers for cancer subtype prediction

Classifier Accuracy (%) | Precision (%) | Recall (%) | Fl-score (%) ROC-AUC
Support Vector Machine (SVM) | 82.4 81.6 80.9 81.2 0.86
k-Nearest Neighbors (k-NN) 78.9 77.8 76.5 77.1 0.82
Logistic Regression 80.3 79.4 78.6 79.0 0.84
Random Forest (RF) 85.7 84.9 85.1 85.0 0.90
Proposed Framework + RF 89.6 88.9 89.2 89.0 0.94
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Figure 3. Kaplan-Meier survival analysis of identified cancer subtypes.

Biological Relevance and Clinical Implications

Survival analysis and functional characterization were used as biological and clinical relevance of the identified
cancer subtypes. Statistically significant differences were observed in patient outcome with statistically
significant differences in survival curves with different subtypes (Kaplan Meier survival curves) indicating an
excellent clinical stratification (Figure 4). Analysis of subtype-specific biomarkers revealed important genes and
signalings pathways to tumour progression, immune response, and metabolic regulation, which can be supported
by the results of functional enrichment. Such results indicate that the suggested framework is not just able to
enhance the computational performance but also to enable biologically interpretable understanding with
prospective effects on accuracy oncology and individually tailored therapeutic protocols.

Subtype 1
26%

Subtype 4
24%

Figure 4. Proportional distribution of samples across identified cancer subtypes.

Comparison with Existing Studies

In comparison to the conventional methods of statistical integration and the newest machine-learning-based
solutions, the suggested framework exhibits distinct benefits both concerning the integration quality and
strength and biological explanations as well. The deep learning-based approach can successfully interact
nonlinear relations across omics layers, and can be preserved over different data conditions in comparison with
the earlier methods that are based on linear assumptions or limited fusion approaches. The systematic
assessment of the quality of integration along with the downstream subtype finding and clinical validation allow
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mitigating the main limitations of earlier studies. On the whole, these findings suggest that multi-omics
integration frameworks can be advanced so that they can contribute to the further development of the study of
tumour genomics and achieve more predictable and comprehensible identification of cancer subtypes.

Limitations and Future Directions

Although the results presented by the proposed multi-omics integration framework are promising, it is important
to note that it has a number of limitations. First, the analysis is mostly based on publicly available data,
including databases of large-scale cancer genomics studies. Although these datasets can give highly curated and
standardised molecular profiling, they might not be sufficient to represent the population-specific variation, rare
cancer subtypes, and clinical heterogeneity in a clinical context. Also, since different studies used different data
generation protocols and batches, different studies might affect the integration results, which could potentially
affect the generalizability of the proposed framework.

The other weakness is the interpretability issues with deep learning based integration models. Though both auto
encoder and Variational auto encoder architectures can capture well nonlinear relationships between layers of
omics, the latent representations that they learn can be hard to make biological sense out of. This shortcoming
has the potential to interfere with the simple conversion of computational discoveries into mechanistic
understanding and clinical judgment. To increase the user trust and biological relevance, the extent of the
transparency in learned representations is still a significant field to explore and advance further.

Further studies can deepen the offered framework and, in turn, include other omics layers, including
metabolomics, single-cell omics, and spatial transcriptomics, and provide a more coherent description of tumour
ecosystems. The incorporation of such modalities of data can be even more valuable in the subtype resolution
and by offering the identification of microenvironment-specific molecular signatures. Nevertheless, such
expansion will necessitate solving the issues connected to the data sparsity, augmented dimensionality, and
computation scaling especially with all-encompassing groups of patients.

Last but not least, the combination of explainable techniques in artificial intelligence and real -time analytics is a
promising opportunity in the future. Bio-interpretability and clinical relevance could be enhanced by the
integration of model interpretation mechanisms, including attention mechanisms, feature attribution, pathway -
guided learning, etc. In addition, the modification of the framework to fit a real-time or near-real-time analysis
can help implement the framework in clinical and translational research applications to enable dynamic tumour
profiling and precision oncology applications.

CONCLUSION

This paper introduced a sophisticated multi-omics data aggregation system based on machine learning that can
be used to overcome the heterogeneity of tumours and enhance the recognition of cancer subtypes. The
concurrent integration of heterogeneous layers of omics into a single latent layer was extremely effective at
capturing complex molecular relationships frequently overlooked by both single-omics and traditional methods
of the omics integrations. Extensive assessment outcomes showed that integration quality, clustering and
subtype discriminability are greatly increased when deep learning is used to enhance integration. Moreover, the
specified subtypes of cancer showed both obvious biological and clinical importance (that is, specific molecular
signatures and high differences in survival) and the practicality of the suggested method. In general, this
publication demonstrates the usefulness of machine learning-derived multi-omics combination in enhancing
tumour genomics studies and has the potential to build more robust and understandable computational
approaches to precision oncology.
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