

The Original

Genomic Biomarkers and Clinical Perspectives of Fluoropyrimidines in Cancer Treatment: A Literature Review

D.A. Saldaña¹, K. Z. Montealegre¹, C. Castro² and M. Rey-Buitrago^{1*}

¹Facultad de medicina, Universidad Nacional de Colombia, Bogotá, Colombia ²Grupo de investigación en Nutrición, genética y metabolismo, Universidad el Bosque, Bogotá, Colombia.

*Corresponding Author: Mauricio Rey Buitrago E. mail: mrey@unal.edu.co

ABSTRACT

Fluoropyrimidines, such as 5-fluorouracil (5-FU), are vital chemotherapy agents against gastric, colorectal, and breast cancer. Despite their efficacy, response and toxicity vary greatly between patients, prompting the search for genomic biomarkers to personalize treatment. In gastric cancer, combinations with fluoropyrimidines and oxaliplatin improve survival, while in colorectal cancer, regimens with 5-FU, oxaliplatin, and irinotecan achieve a 3-year survival rate of 86%, albeit with considerable toxicity. In breast cancer, capecitabine is effective in anthracycline-resistant cases but requires careful risk-benefit assessment. The metabolism of 5-FU is key to understanding these variations. The enzyme dihydropyrimidine dehydrogenase (DPD), encoded by DPYD gene, catabolizes 5-FU. Genetic variants such as DPYD2A (c.1905+1G>A) and c.2846A>T are associated with DPD deficiency, increasing the risk of severe toxicity and mortality. Detection of these variants or elevated blood uracil levels (uracilemia >16 ng/mL) allows for dose adjustments or treatment contraindications. Thymidylate synthase (TS), the target of 5-FU, also influences resistance. Variants in its regulatory region (2R/3R) modulate its expression, affecting efficacy in colorectal and gastric cancer. Other biomarkers include variants in MTHFR, which impact folate availability, and the expression of orotate phosphoribosyltransferase (OPRT) and transporters such as ABCC5. Pharmacogenomics is essential to optimize the safety and efficacy of fluoropyrimidines. Prior genetic screening for critical variants, dose adjustments, and plasma monitoring are recommended. Validation and standardization of these biomarkers across diverse populations is crucial for advancing precision oncology that improves survival and reduces

Keywords: Fluoropyrimidines, cancer, dihydropyrimidine dehydrogenase, gene variant, toxicity

INTRODUCTION

Fluoropyrimidines (capecitabine, floxuridine, tegafur, and fluorouracil) are a group of antineoplastic drugs that replace thymine in nucleic acids, particularly in DNA, by forming adenine-uracil base pairs. The first to be described was 5-fluorouracil (5-FU), which demonstrated anticancer activity 60 years ago, with adequate incorporation into rat hepatomas, generating cytotoxicity against the tumor (Lam et al., 2016). The response obtained with 5-FU led to structural modifications in the molecule that enabled oral administration of chemotherapy. This led to a reduction in administration times and improved absorption through the gastrointestinal mucosa, maintaining a response equal to that initially seen with 5-FU; this is explained by the capacity for biotransformation in the liver or in the patient's tumor cells (Lam et al., 2016; Vodenkova et al., 2020).

With the progress in cancer research and its response to anticancer agents, a great diversity in response has been detected. An example is gastric cancer, in which a great diversity in the disease has been found, which has allowed individuals with this diagnosis to show a wide variety of responses despite being treated identically (Tan et al., 2011). Since there has been increased interest in research on variability and its influence on the response to the treatments used, evidence has been found of the association between certain variants in genes responsible for metabolism and response to chemotherapeutic agents and the incidence of serious adverse events in patients receiving treatment at the systemic level (Ezzeldin & Diasio, 2004).

Progress in the identification of potential biomarkers involved in drug response has established some foundations for precision medicine in cancer treatment. The goal is to define the correct drug doses for the right patient at the right time, based on the genetic profiles of the cancer and the mutational signatures associated with the individual genotype (Low et al., 2018). This has been achieved through the analysis and storage of a large amount of genome data, where clinically significant variants are identified to implement treatment proposals for these types of pathologies, whether in the form of single nucleotide variants (SNV) or structural variations such as copy number (CNV), indels, inversions, and changes in expression profiles at the genomic level in response to treatments. Pharmacogenomics is a fundamental research tool in the search for genetic determinants and biomarkers of response to chemotherapy, with the projection of finding its application in the clinical field in this new paradigm of cancer treatment (Koch, 2004). In this review, we aimed to locate and select relevant published studies on the pharmacogenomics of cancer treatment with fluoropyrimidines, critically appraise them, and extract and synthesize the findings.

MATERIALS AND METHODS

A rapid descriptive systematic review was conducted in accordance with the recommendations of the practical guide issued by the World Health Organization (WHO) (Page et al., 2022) and the recommendations issued by the PRISMA protocol for rapid reviews (Kelly et al., 2016). The formulation of the systematic review question and the selection of MeSH terms used during the database search were performed using the PICO methodology adjusted for diagnostic tests recommended by the PRISMA-DATA Statement.

The search was restricted to original articles reporting the following MeSH terms in different combinations: fluoropyrimidine, cancer, dihydropyrimidine dehydrogenase, gene variant, and toxicity. The search was conducted in the PubMed, Scielo, Cochrane, and Scopus databases. The English and Spanish-language articles published between 2013 and 2024 (or earlier if the publication warranted it) were the only ones included in the search.

An initial filtering of the articles found was performed by title and abstract, and then the articles were filtered according to the following exclusion criteria: systematic reviews, meta-analyses, opinions,

comments, and letters to the editor; studies with incomplete data or lack of detailed information; duplicate studies; or studies that share the same dataset and results. The results were synthesized in a narrative format, presenting the main findings for each study.

RESULTS

CURRENT USE OF FLUOROPYRIMIDINES IN ONCOLOGY GASTRIC CANCER (GI)

Gastric cancer represents a significant public health challenge due to its high morbidity and mortality and complex therapeutic management. Although radical surgery remains the standard curative treatment in localized stages, randomized clinical trials have redefined the role of perioperative and adjuvant chemotherapy. Key trials such as CLASSIC, MAGIC, INT0116, FNLCC/FFCD, and ACT-GC demonstrate that regimens based on capecitabine (a prodrug of 5-FU) and oxaliplatin improve overall survival (OS) and progression-free survival (PFS) compared with surgery alone, consolidating their inclusion in international protocols. This evidence supports the recommendations of the National Comprehensive Cancer Network (NCCN) and the European Society for Medical Oncology (ESMO) guidelines, which prioritize these regimens in stages II-III (Kang & Cho, 2019). In advanced stages (IIIB and IV), which constitute the majority of diagnoses, adjuvant combination chemotherapy has demonstrated superiority over surgery alone. Meta-analyses and studies such as those referenced (Cervantes et al., 2013; Sano, 2008) confirm that adjuvant chemotherapy increases OS by 15–20% and preserves quality of life, in contrast to conventional palliative management. This benefit is attributed to the reduction of micrometastases and systemic disease control. Regarding therapeutic regimens, 5fluorouracil (5-FU) and cisplatin remain first-line agents, both as monotherapy and in combination with anthracyclines (e.g., ECF regimen). Phase III studies report a 5-year overall survival rate of 36% with these protocols in neoadjuvant settings, particularly in diffuse and intestinal histological subtypes (Matuschek et al., 2011). However, tumor heterogeneity and population variations have led to regional adaptations of the regimens, supported by pharmacogenomics and pragmatic trials.

COLORECTAL CANCER (CRC)

Colorectal cancer (CRC) is one of the most prevalent neoplasias worldwide, with an estimated annual incidence of 1 to 2 million new cases. Approximately 70% of cases are sporadic, associated with somatic mutations in key genes such as APC (Wnt pathway regulator), KRAS (linked to cell proliferation), TP53 (tumor suppressor), and DCC (involved in apoptosis) (Mármol et al., 2017). In the remaining 30%, hereditary syndromes stand out: familial adenomatous polyposis (FAP) caused by germline mutations in APC. Lynch syndrome (HNPCC): characterized by mutations in DNA repair genes (MSH2, MLH1, MSH6, PMS1, PMS2), which generate microsatellite instability (Mármol et al., 2017).

In the therapeutic setting, chemotherapy for CRC is based on fluoropyrimidines (5-FU, capecitabine), combined with agents such as oxaliplatin (a DNA replication inhibitor) and irinotecan (a topoisomerase I blocker) in adjuvant or metastatic (mCRC) regimens. Targeted therapies have been integrated into these regimens: anti-EGFR, cetuximab, and panitumumab (effective in RAS wild-type tumors). (Beretta et al., 2004; Braun & Seymour, 2011). Where it has been documented that the three-year overall survival rate of 5-FU-based regimens reaches 86% in patients with non-metastatic CRC with toxic effects such as neutropenia (54%), nausea (37%), neuropathy (38%), and anemia (33%), and with a 2-year overall survival rate with 5-FU-based regimens without Bevacizumab in metastatic colorectal cancer of up to 25% (Cunningham et al., 2009; Uncu et al., 2013).

Clinical evidence highlights that 5-FU-based regimens achieve a 3-year overall survival (OS) of 86% in non-metastatic RCC, although with relevant toxicity profiles: neutropenia (54%), peripheral neuropathy (38%), nausea (37%), and anemia (33%) (Beretta et al., 2004). In contrast, in mRCC, the

2-year OS with 5-FU without bevacizumab does not exceed 25%, reflecting the biological aggressiveness of advanced disease (Braun & Seymour, 2011).

BREAST CANCER

Breast cancer is a priority public health problem, as it is one of the leading causes of female mortality worldwide. Early detection and timely treatment substantially alter the natural history of the disease and improve patient prognosis (Zavala et al., 2019). Breast neoplasms are currently recognized as exhibiting marked heterogeneity, not only from a histological and epidemiological perspective but also in their molecular properties. These advances have allowed tumors to be classified into six molecular subtypes based on gene expression profiles of biomarkers such as ER, PR, claudins, HER2/NEU, PI3KCA, TP53, and MAP3K1, which has led to a more profound understanding of the mechanisms of tumor genesis and progression (Testa et al., 2020).

In the therapeutic setting, recent studies highlight the role of capecitabine in patients with advanced breast cancer who have not previously received taxanes and who are resistant to anthracyclines or have cardiac toxicity associated with these drugs. Its incorporation into adjuvant chemotherapy regimens has shown significant improvements in clinical outcomes, including in cases of metastatic cancer, with a positive impact on overall survival. However, its use in adjuvant settings is associated with an increased toxicity profile, which requires a rigorous evaluation of the risk-benefit balance (Cardoso et al., 2018; Natori et al., 2017).

USE IN OTHER NEOPLASMS

In the treatment of skin cancer, the use of oral capecitabine in combination with alpha interferon has been explored for the treatment of advanced squamous cell carcinoma, highlighting its favorable toxicity profile compared to other therapies (Waldman & Schmults, 2019). Clinical studies have assessed the efficacy of this drug in other skin malignancies, despite its primary approval for breast and colorectal cancer. For example, in patients with actinic keratosis, lesion control and regression have been observed, as well as promising clinical responses in cases of post-transplant squamous cell carcinoma administered at low doses (Blomberg et al., 2017; Rudnick et al., 2016). On the other hand, 5-FU is not currently considered a standard therapy for non-melanoma skin cancer. However, in patients with surgical contraindications who require systemic treatment, an adequate response has been documented as a therapeutic alternative in specific settings (Rudnick et al., 2016).

FLUOROPYRIMIDINES METABOLISM AND IDENTIFICATION OF POTENTIAL BIOMARKERS

The use of 5-FU and its analogues is associated with a risk of lethal toxicity in 0.5% of patients with advanced cancer and severe toxicity in up to 30%, which has prompted the search for genetic variants linked to toxic responses as the central axis of recent research (Leung & Chan, 2015). 5-FU, a structural analogue of uracil, is incorporated into RNA and DNA due to its similarity to natural pyrimidines (Blondy et al., 2020). Its intracellular transport is mediated mainly by SLC22A7 (with high affinity) and by ABC family transporters, also related to the response to fluoropyrimidine-based chemotherapy (Nies et al., 2015). Dihydropyrimidine dehydrogenase (DPD) catalyzes the initial degradation of 5-FU into dihydrofluorouracil (DHFU), which is sequentially metabolized to fluoro-β-ureidopropionate (FUPA) and fluoro-β-alanine (FBAL), the main route of drug elimination (Sharma et al., 2019; Thorn et al., 2011). The undegraded fraction is converted into fluorouridine monophosphate (FUMP) by orotate phosphoribosyltransferase (OPRT). FUMP is subsequently phosphorylated to fluorouridine triphosphate (FUTP) or dephosphorylated to fluorodeoxyuridine diphosphate (FdUDP) by ribonucleotide reductase (RR). Fluorodeoxyuridine monophosphate (FdUMP), a key metabolite, competitively inhibits thymidylate synthase (TYMS), impairing nucleotide synthesis and generating replication stress (Sharma et al., 2019; Thorn et al., 2011) (Figure 1).

5-FU-derived metabolites are directly linked to its cytotoxicity and could serve as biomarkers of individualized response: 1. Fluorodeoxyuridine triphosphate (FdUTP) induces abasic sites in DNA by activating the BER (base excision repair) system (Houghton et al., 1995; Noordhuis et al., 2004; Santi & McHenry, 1972; Van Triest et al., 2000). 2. FUTP, when incorporated into RNA, interferes with mRNA maturation, altering protein synthesis. (Van Triest et al., 2000). 3. FdUMP inhibits TYMS, reduces dTMP production, and promotes the accumulation of dUTP, whose misincorporation into DNA

triggers thymineless death (Houghton, Tillman and Harwood, 1995).

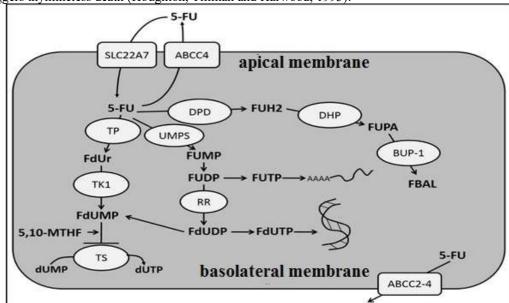


Figure 1. Metabolism and mechanism of action of 5-FU. SLC22A7 = Influx transporter. ABCC4, ABCC 2-4 = Efflux transporters. TP = thymidine phosphorylase, TK1 = thymidine kinase. TS = Thymidylate synthase. DPD = dihydropyrimidine dehydrogenase. DHP = Dihydropyrimidinase. BUP-1 = β -ureidopropionase. UMPS = Uridine monophosphate synthase/orotate phosphoribosyl transferase. RR = Ribonucleotide reductase. Metabolites are described in the body of the document. The truncated arrow indicates inhibition (Castro-Rojas, Ortiz-López and Rojas-Martínez, 2014).

GENOMIC BIOMARKERS ASSOCIATED WITH THE PHARMACOKINETICS AND PHARMACODYNAMICS OF 5-FU

This approach is based on the relationship between pyrimidine degradation metabolic pathways and fluoropyrimidine-induced toxicity. A key milestone was the report by Tuchman et al., who described severe toxicity in a patient with familial pyrimidinemia after exposure to 5-FU, suggesting a DPD enzyme deficiency (Tuchman *et al.*, 1985). Subsequently, it was confirmed that a 165-nucleotide deletion in the *DPYD* gene encoding DPD altered mRNA stability and reduced enzyme activity, being associated with an increased risk of toxicity (R *et al.*, 1995; G *et al.*, 1999). The enzymes dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) have emerged as promising biomarkers for predicting toxicity and prognosis in patients treated with 5-FU. Pharmacogenomic studies have identified polymorphic variants in the genes of these enzymes, which explain the variability in therapeutic response and the occurrence of serious adverse effects (Shen *et al.*, 2015; Akhter and Rashid, 2019). These findings have prompted research into genomic biomarkers to personalize the use of fluoropyrimidines, optimizing efficacy and minimizing the risk of serious toxicity. These potential genomic biomarkers are listed below:

DIHYDROPYRIMIDINE DEHYDROGENASE ENZYME (DPD)

The enzyme dihydropyrimidine dehydrogenase (DPD) is responsible for the catabolism of pyrimidine bases, catalyzing the reduction of uracil and thymine to 5,6-dihydrouracil and 5,6-dihydrothymine, respectively, as part of the degradation of pyrimidines (Tuchman, 1993). In addition, it plays a critical role in the inactivation of 5-FU. As the rate-limiting enzyme in this pathway, it regulates the catabolism of both endogenous pyrimidines and exogenous fluoropyrimidines (Sharma, Gupta and Verma, 2019).

Genetic and Molecular Structure of DPD: The *DPYD* gene, located on chromosome 1p21.3, is over 840 kb long and contains 23 exons encoding a homodimeric protein of 1025 amino acid residues (Forouzesh and Moran, 2021). Each subunit of the enzyme consists of five functional domains: -Domain I (residues 27-172): Composed of α-helices and two [4Fe-4S] clusters. -Domain II (residues 173-286, 442-524): Flavin adenine dinucleotide (FAD)-binding site. -Domain III (residues 287-441): NADPH cofactor-binding site. -Domain IV (residues 525-847): TIM barrel fold that binds FMN and pyrimidine substrates. -Domain V (residues 1-26, 848-1025): Contains two additional [4Fe-4S] centers. Enzymatic activity requires hydrophobic interaction and hydrogen bonding between both subunits, forming an electron transport chain from NADPH to pyrimidine substrates (62%). This structure explains why DPD is only active as a dimer (Dobritzsch *et al.*, 2001; Forouzesh and Moran, 2021).

DPD Deficiency: Genetic Basis and Clinical Manifestations DPD deficiency, an autosomal recessive disorder (OMIM #274270), was initially described by Berger et al. in patients with excessive thymine uraciluria (Berger et al., 1984; Quinonez and Thoene, 2020) (Berger et al., 1984; Quinonez and Thoene, 2020). Its clinical presentation ranges from asymptomatic individuals (heterozygotes) to severe cases with seizures and neurological deficits (homozygotes). It is estimated that 0.2% of the population has complete deficiency and 2–6% have partial deficiency (Lu et al., 1998; Mason et al., 2009). In oncology, reduced DPD activity leads to toxic accumulation of 5-FU and its metabolites. Up to 31% of patients treated with 5-FU develop severe toxicity, and 59% of these cases are associated with enzyme deficiency (Lu et al., 1998; AB et al., 1999; van Kuilenburg et al., 2000, 2001; Ezzeldin et al., 2002; Ezzeldin and Diasio, 2004). A dramatic example was the lethal interaction between 5-FU and sorivudine in Japan, attributed to the inhibition of DPD by a metabolite of the antiviral agent (Haruhiro Okuda et al. 1997). More than 30 pathogenic variants in DPYD are associated with fluoropyrimidine toxicity. Four stand out for their robust clinical evidence: 1. c.1905+1G>A (DPYD*2A, rs3918290): Located in the splice donor site of exon 14, it generates a truncated mRNA and complete loss of enzymatic activity in homozygotes. It has a population frequency of 1.5% in Finland vs. <0.1% in African and Latin American populations (Chazal et al., 1996; Mcmurrough and McLeod, 1996; JL et al., 1997; AB et al., 1999; van Kuilenburg et al., 2001; Ezzeldin et al., 2002). 2. c.2846A>T (rs67376798): Asp→Val (D949V) substitution in the catalytic domain V, reducing enzyme activity by 41% in vitro. Linked to severe hematological and gastrointestinal toxicity (Loriot et al., 2018; Wörmann et al., 2020). 3. HapB3 (rs75017182): Includes the intronic variant c.1129–5923C>G, which induces an aberrant splicing site, decreasing activity by 35%. Frequency 4.8% in Caucasians (Harris et al., 1990; Jacobs et al., 2016). 4. c.1679T>G (rs55886062): Ile—Ser (I560S) change in the FMN-binding domain, reducing activity by 75%. Frequency 0.1% in Europeans (Mcmurrough and McLeod, 1996; G and AL, 2002; Wörmann et al., 2020). 5. Other variants of clinical interest: - Missense: c.1601G>A (p.Ser534Asn), c.2194G>A (p.Val732Ile) (Jiang et al., 1997; Ikeguchi et al., 2001; Baba et al., 2003; Meulendijks et al., 2015; M et al., 2020). - Ethnic-specific: c.557A>G (p.Lys186Arg) in Afro-descendants (Loriot et al., 2018; TJ et al., 2021). - Deletions: c.295-298delTCAT, c.1897delC (AB et al., 1999). - Nonsense: c.85T>C (p.Ser29Pro), c.703C>T (p.Arg235Ter), c.2658G>A (p.Lys886Lys), c.2983G>T (p.Gly995Ter) (AB et al., 1999) (AB et al., 1999). Rare variants account for 61.2% of DPYD functional variability, supporting the use of next-generation sequencing (NGS) for their detection (Toriumi et al., 2004; E et al., 2017; Takeyama et al., 2018). DPYD genotyping is key to stratifying the risk of severe toxicity (neutropenia, mucositis) and adjusting fluoropyrimidine doses. DPD activity shows interindividual variability (up to

6-fold) without influence of age, sex, ethnicity, or smoking (Chazal et al., 1996; Mcmurrough and McLeod, 1996; Lu et al., 1998; G et al., 1999). However, studies in mononuclear cells reveal intraindividual fluctuations over 24 hours, supporting the need for pretreatment plasma or enzyme monitoring (JL et al., 1997). Guideline-based clinical recommendations (Loriot et al., 2018; Wörmann et al., 2020): -Genetic screening: Search for the four main variants to adjust doses or avoid fluoropyrimidines. -Uracilemia: Levels >16 ng/mL indicate dose reduction; levels >100 ng/mL contraindicate its use. -Chronotherapy: Continuous infusion of 5-FU adjusted to circadian rhythms to stabilize plasma levels (Harris et al., 1990; G and AL, 2002; Jacobs et al., 2016). These strategies are based on the lower activity of DPD in tumor tissue (vs. healthy tissue) (Jiang et al., 1997; Ikeguchi et al., 2001; Baba et al., 2003), especially in colorectal cancer (Jiang et al., 1997; Ikeguchi et al., 2001), and its association with severe toxicity in unadjusted patients (Meulendijks et al., 2015; M et al., 2020; TJ et al., 2021). Furthermore, DPD overexpression in gastric tumors correlates with 5-FU resistance and a worse prognosis (TORIUMI et al., 2004). The integration of genotyping (DPYD), biomarkers (uracilemia), and circadian approaches optimizes the safety of fluoropyrimidine use. Although guidelines prioritize four variants, the genetic heterogeneity of DPD suggests expanding NGS analysis, especially in understudied populations. DPD pharmacogenomics remains a cornerstone for personalizing cancer treatments and minimizing risks.

THYMIDYLATE SYNTHASE ENZYME (TS)

The TS gene has been identified as a key candidate for relative resistance to 5-FU, where variants in its regulatory regions modulate gene transcription. High levels of intratumoral TS correlate with decreased sensitivity to the drug, while specific polymorphisms directly influence therapeutic efficacy (E et al., 2017) (Table 1).

Table 1. TS-associated polymorphisms with direct involvement in the efficacy of fluoropyrimidine-

based therapy

sed therapy					
Type of metabolizer	Based on genotype (McMURROUGH and McLEOD, 1996; JL <i>et al.</i> , 1997)		Based on phenotype (Chazal et al., 1996)		
	Variants of interest	DPD activity		Predicted DPD activity score (Chazal et al., 1996; McMURROUGH and McLEOD, 1996)	Behavior (Chazal et al., 1996; McMURROUGH and McLEOD, 1996)
	c.1129-5923C>G c.1905+1G>A	0.5	Uracilemia measurement		
	c.1679T>G c.2846A>T	0			
Normal metabolizer	Non-carriers		<16 ng/mL	2	Usual dose
Intermediate metabolizer	Heterozygous carriers		>16ng/mL	1-1.5	Score 1: Reduction 50% dosis Score 1.5: Reducción 25% dosis
Poor metabolizer	Compound heterozygous or homozygous carriers u		>100ng/mL)	0-0.5	Evaluate other treatment

Mechanism of action and resistance: The active metabolite FdUMP covalently inhibits the TS enzyme, blocking thymidylate synthesis and, consequently, DNA replication (Santi and McHenry, 1972; Takeyama *et al.*, 2018). Alterations in TS expression or structure (e.g., mutations that reduce affinity for FdUMP) compromise treatment response (Peters *et al.*, 2002). In colorectal cancer, for example, high intratumoral TS activity is associated with resistance to fluoropyrimidines, highlighting its potential as a prognostic marker (Takeyama *et al.*, 2018). Genetic variants with clinical impact: 1. 6-bp deletion in the 3'UTR: In advanced gastric cancer, patients carrying this variant showed improved disease progression and overall survival under 5-FU regimens, likely due to a reduction in TS expression (Keam *et al.*, 2008). 2. 5'UTR tandem repeats (VNTRs): 2R (2 repeats) and 3R (3 repeats) alleles regulate TS transcription. TS overexpression (associated with 3R) reduces the efficacy of 5-FU, while genotypes such as 2R/2R, 2R/3C, and 3C/3C are associated with improved survival in colorectal and gastric cancer (E *et al.*, 2017; Yoshikawa *et al.*, 2019). 3. Population distribution: The 3R/3R genotype is more common in Asian populations (67% in China vs. 38% in the United Kingdom), suggesting

ethnic differences in treatment response (S et al., 1999; E et al., 2008). Controversial clinical evidence: Although TS expression has been associated with decreased survival in lung, hepatocellular carcinoma, and pancreatic cancer (Fu et al., 2019), its role is inconsistent: - In metastatic colorectal cancer, some studies report an inverse correlation between TS and survival under 5-FU (A et al., 2004), while Noda et al. observed improved response to irinotecan-based regimens in tumors with high TS expression (NODA et al., 2006). - In gastric cancer, TS variants did not show prognostic value with the S-1 analogue in a Japanese population, although they did show utility in predicting therapeutic benefit (S et al., 1999). Despite discrepancies, TS genotyping is emerging as a promising tool for predicting response/toxicity. Priority variants include (Balboa-Beltrán et al., 2015): - VNTR in 5'UTR (rs45445694): 2-9 repeats. - G>C SNP in the 3R allele (rs2853542): alters transcription factor binding. - 6-bp deletion in the 3'UTR (rs34489327): modulates mRNA stability. Current evidence supports the integration of TS biomarkers into precision oncology, although multicenter studies are needed to standardize their use in clinical guidelines.

METHYLENETRAHYDROFOLATE REDUCTASE ENZYME (MTHFR)

Methylenetetrahydrofolate reductase (MTHFR) converts 5-10 methylenetetrahydrofolate (5-10 MTHF) into 5-methylenetetrahydrofolate (5-MeTHF). It has been established that the optimal efficacy of 5-FU requires the intratumoral presence of 5-10 MTHF, which depends on the activity of MTHFR, where it is proposed that 5-10 MTHF associated with FdUMP generates a greater inhibition of TS, so that a lower activity of MTHFR theoretically leads to a greater inhibition of TS (Lin et al., 2019). In a study conducted by Ramos et al., an association was found between the MTHFR variants C677T (rs1801133) and A1298C (rs1801131) and the occurrence of toxicity related to the use of fluoropyrimidines in a cohort of Costa Rican patients with metastatic colorectal cancer, which suggests an additional role as a biomarker for this gene; however, the role of its screening is not yet entirely clear (Ramos-Esquivel, Chinchilla and Valle, 2020). Although multiple variants have been described in the MTHFR gene, only two have been found to be related to reduced enzyme activity. In the case of c.677C> T, a greater thermolability of the enzyme has been found, which generates a reduction in its activity by 70% for heterozygous carriers and 35% for homozygous carriers. For c.1298A> C, a decrease in activity has also been reported, but to a lesser extent (Yeh et al., 2017). Other variants described are c.1298A> C and c.1286A> C, which are associated with the development of toxicity and a poor prognosis when treated with 5-FU (F et al., 2011; K et al., 2011).

THYMIDINE KINASE 1 ENZYME

It has been found that with the inhibition of TS, the activity of thymidine kinase 1 (TK1) increases, suggesting a mechanism associated with the rescue kinetics seeking to improve the mechanisms of thymidine uptake, where it has been found that 24 hours after the start of treatment with 5-FU, an increase in the expression of TK1 is seen, which suggests this protein can be used as a biomarker to evaluate the inhibition of TS (Lee *et al.*, 2010). From a biological point of view, it is known that this enzyme plays an important role in the S phase of the cell cycle, is present in the synthesis of thymidine monophosphate (TMP), and participates in the phosphorylation of fluorodeoxyuridine (FdUrd), which leads to the production of the pharmacologically active metabolite of 5-FU, which is why its activity is related to the inhibition of TS, seeing a change in activity in tumor tissues vs. healthy tissues; however, its biological use is still unclear (Kenji Dohden, Kenji Ohmura and Yoh Watanabe, 1993; Sakamoto *et al.*, 2015).

ENZYMES OF THE PYRIMIDINE SYNTHESIS AND SALVAGE PATHWAYS

Enzymes involved in pyrimidine salvage and biosynthesis influence cancer chemotherapy based on pyrimidine antagonists such as 5-FU, capecitabine, and tegafur. Their function is closely linked to the activity of pyrimidine synthesis enzymes, including dihydropyrimidine dehydrogenase (DPD), thymidylate synthase (TS), uridine phosphorylase (UP), thymidine phosphorylase (TP), uridine

monophosphate kinase (UMPK), and orotate phosphoribosyl transferase (OPRT), since their cellular expression levels depend on the activity of these enzymes in cancer cells, suggesting a role in sensitivity and resistance to these drugs (Kim et al., 2009). It has been found that the intratumoral levels of expression of thymidine phosphorylase and dihydropyrimidine dehydrogenase correlate with the response to capecitabine and doxifluridine, thus predicting the response to these drugs, suggesting their clinical use instead of categorizing patients as responders and non-responders. A positive correlation has also been found between the expression of other enzymes of de novo pyrimidine synthesis, such as OPRT, TMPK, UMPK, and UMPK/CMPK, together with the enzyme cytidine deaminase (CD) in the face of chemosensitivity to 5-FU (Yasuno et al., 2013).

URIDINE PHOSPHORYLASE ENZYME (UP)

Uridine phosphorylase is an enzyme that is part of the pyrimidine salvage pathway by adding ribose or deoxyribose to pyrimidine bases, forming uridine or thymidine, which is why this enzyme plays an important role in DNA synthesis. Two isoforms have been described: uridine phosphorylase I (UP1) and uridine phosphorylase II (UP2) (YT et al., 2020). It has been found that ATP plays a role in the function of uridine phosphorylase in Escherichia coli, where ATP alters the folding of the enzyme, modifying its enzymatic activity. It has been found that the increase in the concentration of ATP in cancer cells confers resistance to the drug 5-FU derived from the loss of enzyme activity and the biotransformation of the drug (YT et al., 2020).

It has been found that the differential expression of this enzyme in tumor tissue and healthy tissue is one of the factors involved in the chemosensitivity and cytotoxic effect of 5-FU, where it has been found that the activity of this enzyme is positively regulated by oncogenes, tumor suppressor proteins, and cytokines, contrary to what happens to its homologous enzyme, thymidine phosphorylase (TP), which is reduced in tumor tissues (Pizzorno et al., 2002). In a study conducted by Cao et al. in which a knockout mouse model for the UP-/- enzyme was used, a lower incorporation of 5-FU into nucleic acids was found, as well as its role in the activation of 5-FU, given that it was found that the deficiency in the activity of the enzyme alters the pharmacokinetic profile of the drug, increasing its clearance (Cao et al., 2002). It has also been suggested that the main therapeutic activity of 5-FU is associated with DNA damage, and many toxic side effects are mainly related to the incorporation of FUTP into RNA, where the production of this metabolite is mediated by the activity of the UP enzyme, so apart from the role of this enzyme at the level of the cytotoxic effect of fluorouracil, its role in the appearance of adverse events and as a marker against the use of cytoprotective agents such as uridine has also been raised, where these are used as an enzyme inhibition strategy as a prevention and treatment measure (Renck et al., 2013).

OROTATE PHOSPHORIBOSYLTRANSFERASE ENZYME (OPRT)

Orotate phosphoribosyltransferase is an enzyme that is present in de novo pyrimidine synthesis, where it helps catalyze the formation of orotate 5'-monophosphate (OMP) (Hozumi et al., 2015). Within the uridine 5'-monophosphate synthetase gene, a bifunctional enzyme is encoded where the N-terminal domain has the orotate phosphoribosyltransferase (OPRT) function and the C-terminal domain has the orotidine 5'-monophosphate decarboxylase function (P et al., 2018). The OPRT enzyme has been identified as the main enzyme responsible for the phosphoribosylation of 5-FU in the presence of phosphoribosyl pyrophosphate (PRPP) in colorectal tumor tissue, where this enzyme commonly presents a higher activity compared to non-tumor tissue and has been assigned the rate-limiting step in the activation of 5-FU (S et al., 2007). In fact, higher OPRT enzyme expression has been associated with a better response to 5-FU-based treatment in CRC patients in terms of disease-free survival as well as a lower incidence of side effects, thus being proposed as a predictive marker of efficacy for this agent (W et al., 2003; S et al., 2013). A correlation has been found between high tumor-level OPRT expression and increased sensitivity to 5-FU in urinary bladder, gastric, and colorectal cancer. Likewise, it has been

shown that combined therapies with S-1 for malignant pleural mesothelioma refractory to pemetrexed are highly effective in tumors with high OPRT expression (Hamamoto et al., 2016; K et al., 2019).

Using preclinical models, it has been shown that low DPYD enzyme expression and high OPRT enzyme expression are associated with increased sensitivity of colorectal tumors to 5-FU (KINOSHITA et al., 2007). These results are reflected in the clinical context, where low DPYD enzyme expression, as well as high OPRT enzyme expression or activity in tumor tissue, appear to be associated with a better prognosis for patients with resectable CRC in the adjuvant setting and for patients with metastatic CRC receiving 5-FU-based therapy (W et al., 2003; T et al., 2006; Yamada, Linuma, and Watanabe, 2008). Supporting this hypothesis, a prospective clinical study by Ochiai et al. on a cohort of patients with CRC showed that those with higher OPRT/DPYD expression ratio values in tumor tissue samples had a better prognosis (5-year disease-free survival and overall survival) in response to treatment with 5-FU (T et al., 2014).

THYMIDINE PHORPHORYLASE ENZYME (TP)

Thymidine phosphorylase (TP) is responsible for reversibly catabolizing thymidine, deoxyuridine, and its analogues to thymine uracil in the presence of phosphate, where in the case of 5FU, it is converted into fluorodeoxyuridine (FdU) by thymidine phosphorylase (TP) and then converted into FdUMP by thymidine kinase (TK) (T et al., 2018; Mori et al., 2019). It has been shown that the TP enzyme is indistinguishable from platelet-derived endothelial cell growth factor (PD-ECGF), which is why it has demonstrated angiogenic effects and is of great interest for its trophic effects on tumor tissue, as well as its role in the clinical response to 5-FU, where it would have dual action as an angiogenic factor and, therefore, pro-tumorigenic and as a pro-activator of 5-FU (JG et al., 2005; T et al., 2018), which is why it is proposed that the decrease in TP and the increase in TS levels can be considered as the main factors involved in the development of resistance to 5-FU (Mori et al., 2019).

URIDINE MONOPHOSPHATE KINASE ENZYME (UMPK)

The UMPK enzyme has been linked to the acquired resistance of colorectal tumor cells to 5-FU. It is an enzyme involved in the generation of FdUTP from 5-FU. A decrease in the expression levels of the enzyme would lead to a decrease in the incorporation of FdUTP into DNA and consequently to a lower cytotoxic response of tumor cells (R et al., 2009). Different variants in the genes that code for these enzymes have been associated with alterations in their activity, which may result in ineffective or toxic responses to treatment with 5-FU and analogous compounds (JG et al., 2005).

DIHYDROPYRIMIDINASE (DPYS) AND B-UREIDOPROPIONASE (UPB1) ENZYMES

The highest enzymatic activities of the enzymes dihydropyrimidinase and β -ureidopropionase have been detected at the physiological level in the liver and kidneys, which is why these organs are considered to be the main ones responsible for the catabolism of pyrimidines at the systemic level. In this way, while in the liver the final product of uracil catabolism through this pathway is, between 70% and 100%, the compound β -alanine, in extrahepatic tissues the final product is dihydrouracil (Kuilenburg, Lenthe, and Gennip, 2006). It is noteworthy that when comparing the activity of all enzymes in relation to tumor and non-tumor tissues, in all tumor tissues analyzed there is greater activity of the dihydropyrimidinase enzyme than in its non-tumor counterparts. Largely because of this, solid tumors resemble the liver in that they carry out the entire catabolic process until the formation of β -alanine as the end product, unlike their non-tumor counterparts (Naguib, el Kouni, and Cha, 1985). There are few reports of fluoropyrimidine toxicity due to variants in the DPYS gene. The existence of a rare missense variant in exon 5 of the DPYS gene (DPYS 833G>A), which results in a complete loss of enzyme activity, has been associated with lethal 5-FU toxicity in a patient with breast cancer (van Kuilenburg et al., 2001). Another variant also present in this patient, DPYS c.-1T>C, has been

associated with an increased risk of gastrointestinal toxicity from fluoropyrimidine administration (Fidlerova et al., 2009).

FLUOROPYRIMIDINES TRANSPORTERS

Two types of transporters allow the flow of pyrimidine nucleosides into cells: the equilibrative nucleoside transporter system (ENT-1/SLC29A1 and ENT-2/SLC29A2) and the concentrating nucleoside transporter system (CNT-1/SLC28A1 and CNT-3/SLC28A3). The former are abundant in tumor tissues, whereas the latter are frequently absent (Cao et al., 2011). A negative correlation between the expression (regarding mRNA) of the proteins SLC22A2, SLC23A2, and ABCB1 and a positive correlation between the ABCC2 protein and chemosensitivity to 5-FU in adenocarcinoma and esophageal squamous cell carcinoma lines have been shown (153). Although the functional significance of this correlation remains to be verified, these results demonstrate the possible involvement of these proteins in the transport mechanism of 5-FU to and from tumor cells. The participation of the ABCC5 protein in the transport mechanism (efflux) of 5-FU in colon cancer and breast adenocarcinoma cells has been better studied, demonstrating that it is capable of mediating the transport of 5-FU and its monophosphorylated metabolites and of conferring resistance to these in cells that overexpress it (Pratt et al., 2005).

DISCUSSION

Cancer remains one of the diseases that generates the greatest interest in the public health field, given that despite great efforts in the search for more effective treatments and therapeutic targets, it remains one of the leading causes of death worldwide. With the development of omics sciences, a greater understanding of the individualized pathophysiological process has been achieved, as well as progress in the establishment of effective personalized pharmacological therapies and the identification of patients at higher risk of adverse events to limit treatment discontinuation, which directly impacts the outcome of the disease. In the specific case of fluoropyrimidines, which have demonstrated their clinical utility over time, a major limitation has been the appearance of severe toxicity events and episodes of therapeutic inefficacy despite management according to management guidelines. This is the reason why numerous studies have already been conducted to assess strategies for the individualization of drug therapy. Pharmacogenomics is one of the strategies that has been able to identify the potential causes of the diversity of response among populations.

The identification of potential biomarkers associated with treatment with these chemotherapeutic agents raises the possibility of interindividual management, allowing for the early identification of patients who may have a better response and thus enhance the anticancer effect already demonstrated by this group of drugs. Furthermore, information can be generated about patients at greatest risk of adverse events, leading to their identification. This already provides a solid scientific basis, with some organizations dedicated to pharmacogenomics already developing recommendations for phenotype and genotype recognition for individualized dosing.

The identification of potential biomarkers associated with treatment with these chemotherapeutic agents raises the possibility of interindividual management, allowing for the early identification of patients who may have a better response and thus enhance the anticancer effect already demonstrated by this group of drugs. Furthermore, information can be generated about patients at greatest risk of adverse events, leading to their identification. This already provides a solid scientific basis, with some organizations dedicated to pharmacogenomics already developing recommendations for phenotype and genotype recognition for individualized dosing.

For now, the way is to identify the prevalence of genetic variants in the various populations as a mechanism to evaluate their genetic contribution according to ancestry to the risk of toxicity and the

appearance of therapeutic failure (ML et al., 2009). Haplotype association studies, as well as direct genotyping of patients from the sequencing of treatment response genes, would allow establishing their real prevalence based on the genotypic frequencies of said genomic biomarkers in each population under study associated with their validation in the clinical context, for which genotype-phenotype correlation studies in clinical trials are essential to elucidate the real relevance of said genomic biomarkers in the response to treatment (Candelaria *et al.*, 2006).

Finally, in the case of fluoropyrimidines, this document presents all the possible markers involved in evaluating their response and toxicity, all of this focused on the use of pharmacogenomics as a tool for the treatment of prevalent chronic diseases such as cancer, which in the long term will generate an impact on the treatment of patients and ultimately on public health in the face of a reduction in mortality rates associated with cancer treatment.

ACKNOWLEDGMENTS

We thank all the individuals and institutions that contributed to this work, especially for their technical and financial support.

CONFLICT OF INTEREST

None.

REFERENCES

A, H. et al. (2004) 'Prognostic significance of thymidylate synthase in patients with metastatic colorectal cancer who receive protracted venous infusions of 5-fluorouracil', *International journal of clinical oncology*. Int J Clin Oncol, 9(5), pp. 388–392. doi: 10.1007/S10147-004-0425-1.

AB, V. K. *et al.* (1999) 'Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency', *Human genetics*. Hum Genet, 104(1), pp. 1–9. doi: 10.1007/PL00008711.

Akhter, K. and Rashid, M. E. (2019) 'Study of Thymidylate Synthase (TS) and Dihydropyrimidine Dehydrogenase (DPD) expressions on 5-fluorouracil in oral squamous cell carcinoma', *Asian Pacific Journal of Cancer Prevention*. Asian Pacific Organization for Cancer Prevention, 20(2), pp. 503–508. doi: 10.31557/APJCP.2019.20.2.503.

Baba, H. *et al.* (2003) 'Dihydropyrimidine dehydrogenase and thymidylate synthase activities in hepatocellular carcinomas and in diseased livers', *Cancer Chemotherapy and Pharmacology 2003 52:6*. Springer, 52(6), pp. 469–476. doi: 10.1007/S00280-003-0695-8.

Balboa-Beltrán, E. *et al.* (2015) 'Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis', *Medicine*. Wolters Kluwer Health, 94(27), p. e1091. doi: 10.1097/MD.00000000001091.

Beretta, G. D. *et al.* (2004) 'Adjuvant treatment of colorectal cancer', *Surgical Oncology*. Elsevier Ltd, 13(2–3), pp. 63–73. doi: 10.1016/j.suronc.2004.09.008.

Berger, R. *et al.* (1984) 'Dihydropyrimidine dehydrogenase deficiency leading to thymine-uraciluria. An inborn error of pyrimidine metabolism', *Clinica Chimica Acta*. Elsevier, 141(2–3), pp. 227–234. doi: 10.1016/0009-8981(84)90014-7.

Blomberg, M. *et al.* (2017) 'Research gaps in the management and prevention of cutaneous squamous cell carcinoma in organ transplant recipients', *British Journal of Dermatology*. Blackwell Publishing Ltd, 177(5), pp. 1225–1233. doi: 10.1111/bjd.15950.

Blondy, S. *et al.* (2020) '5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes', *Cancer Science*, September, pp. 3142–3154. doi: 10.1111/cas.14532.

Braun, M. S. and Seymour, M. T. (2011) 'Balancing the efficacy and toxicity of chemotherapy in colorectal cancer', *Therapeutic Advances in Medical Oncology*. Ther Adv Med Oncol, 3(1), pp. 43–52. doi: 10.1177/1758834010388342.

Candelaria Myrna, Taja-Chayeb Lucía, Vidal-Millan Silvia, Gutiérrez Olga, Serrano-Olvera Alberto, Arce-Salinas Claudia, D.-G. A. (2006) 'Importancia de la Determinación de Variantes Genéticas que Influyen en la Eficacia y Toxicidad Farmacológica en Oncología', *Cancerología 1*, pp. 57–70.

Cao, D. et al. (2002) 'Uridine phosphorylase (-/-) murine embryonic stem cells clarify the key role of this enzyme in the regulation of the pyrimidine salvage pathway and in the activation of fluoropyrimidines', Cancer Research, 62(8), pp. 2313–2317.

Cao, D. *et al.* (2011) 'Differential expression of uridine phosphorylase in tumors contributes to an improved fluoropyrimidine therapeutic activity', *Molecular Cancer Therapeutics*. NIH Public Access, 10(12), p. 2330. doi: 10.1158/1535-7163.MCT-11-0202.

Cardoso, F. *et al.* (2018) '4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)', *Annals of Oncology*. Oxford University Press, 29(8), pp. 1634–1657. doi: 10.1093/annonc/mdy192.

Castro-Rojas, C., Ortiz-López, R. and Rojas-Martínez, A. (2014) 'Farmacogenómica del tratamiento de primera línea en el cáncer gástrico: Avances en la identificación de los biomarcadores genómicos de respuesta clínica', *Investigacion Clinica (Venezuela)*, 55(2), pp. 185–202.

Cervantes, A. et al. (2013) 'Current questions for the treatment of advanced gastric cancer', Cancer Treatment Reviews. Cancer Treat Rev, pp. 60–67. doi: 10.1016/j.ctrv.2012.09.007.

Chazal, M. et al. (1996) 'Link between dihydropyrimidine dehydrogenase activity in peripheral blood mononuclear cells and liver.', Clinical Cancer Research, 2(3).

Cunningham, D. *et al.* (2009) 'Two different first-line 5-fluorouracil regimens with or without oxaliplatin in patients with metastatic colorectal cancer', *Annals of Oncology*. Ann Oncol, 20(2), pp. 244–250. doi: 10.1093/annonc/mdn638.

Dobritzsch, D. *et al.* (2001) 'Crystal structure of dihydropyrimidine dehydrogenase, a major determinant of the pharmacokinetics of the anti-cancer drug 5-fluorouracil', *EMBO Journal*, 20(4), pp. 650–660. doi: 10.1093/emboj/20.4.650.

E, G. et al. (2008) 'Methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase promoter (TSER) polymorphisms in Indonesian children with and without leukemia', *Leukemia research*. Leuk Res, 32(1), pp. 19–24. doi: 10.1016/J.LEUKRES.2007.02.011.

E, S. et al. (2017) 'Pharmacogenetic Analysis of the UK MRC (Medical Research Council) MAGIC Trial: Association of Polymorphisms with Toxicity and Survival in Patients Treated with Perioperative Epirubicin, Cisplatin, and 5-fluorouracil (ECF) Chemotherapy', Clinical cancer research: an official journal of the American Association for Cancer Research. Clin Cancer Res, 23(24), pp. 7543–7549.

doi: 10.1158/1078-0432.CCR-16-3142.

Ezzeldin, H. *et al.* (2002) 'A High-Throughput Denaturing High-Performance Liquid Chromatography Method for the Identification of Variant Alleles Associated with Dihydropyrimidine Dehydrogenase Deficiency', *Analytical Biochemistry*, 306(1), pp. 63–73. doi: 10.1006/abio.2002.5666.

Ezzeldin, H. and Diasio, R. (2004) 'Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration', *Clinical Colorectal Cancer*. Elsevier Inc., pp. 181–189. doi: 10.3816/CCC.2004.n.018.

F, T. *et al.* (2011) 'Methylenetetrahydrofolate reductase genetic polymorphisms and toxicity to 5-FU-based chemoradiation in rectal cancer', *British journal of cancer*. Br J Cancer, 105(11), pp. 1654–1662. doi: 10.1038/BJC.2011.442.

Fidlerova, J. *et al.* (2009) 'Contribution of dihydropyrimidinase gene alterations to the development of serious toxicity in fluoropyrimidine-treated cancer patients', *Cancer Chemotherapy and Pharmacology* 2009 65:4. Springer, 65(4), pp. 661–669. doi: 10.1007/S00280-009-1071-0.

Forouzesh, D. C. and Moran, G. R. (2021) 'Mammalian dihydropyrimidine dehydrogenase', *Archives of Biochemistry and Biophysics*, (714), p. 109066. doi: 10.1016/j.abb.2021.109066.

Fu, Z. et al. (2019) 'TYMS presents a novel biomarker for diagnosis and prognosis in patients with pancreatic cancer', *Medicine*. Wolters Kluwer Health, 98(51). doi: 10.1097/MD.000000000018487.

G, M. et al. (1999) 'Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity', British journal of cancer. Br J Cancer, 79(3–4), pp. 627–630. doi: 10.1038/SJ.BJC.6690098.

G, M. and AL, C. (2002) 'Clinical pharmacokinetics of 5-fluorouracil with consideration of chronopharmacokinetics', *Chronobiology international*. Chronobiol Int, 19(1), pp. 177–189. doi: 10.1081/CBI-120002597.

Hamamoto, Y. *et al.* (2016) 'Orotate phosphoribosyltransferase is overexpressed in malignant pleural mesothelioma: Dramatically responds one case in high OPRT expression', *Rare Diseases*. Taylor & Francis, 4(1), p. e1165909. doi: 10.1080/21675511.2016.1165909.

Harris, B. E. *et al.* (1990) 'Relationship between Dihydropyrimidine Dehydrogenase Activity and Plasma 5-Fluorouracil Levels with Evidence for Circadian Variation of Enzyme Activity and Plasma Drug Levels in Cancer Patients Receiving 5-Fluorouracil by Protracted Continuous Infusion', *Cancer Research*, 50(1).

Haruhiro Okuda, Takahito Nishiyama, Kenichiro Ogura, Sekio Nagayama, Kazumasa Ikeda, Shuji Yamaguchi, Yoshimasa Nakamura, Yasuro Kawaguchi, Tadashi Watabe (1997) 'Lethal Drug Interactions of Sorivudine, a New Antiviral Drug, with Oral 5-Fluorouracil Prodrugs', *Drug Metabolism and Disposition*, 25(5), pp. 270–273. doi: https://doi.org/10.1124/dmd.14.5.51.

Houghton, J. A., Tillman, D. M. and Harwood, F. G. (1995) 'Ratio of 2'-deoxyadenosine-5'-triphosphate/thymidine-5'-triphosphate influences the commitment of human colon carcinoma cells to thymineless death.', *Clinical Cancer Research*, 1(7), pp. 723–730.

Hozumi, Y. et al. (2015) 'Orotate phosphoribosyltransferase localizes to the Golgi complex and its

expression levels affect the sensitivity to anti-cancer drug 5-fluorouracil', *Biomedical Research (Japan)*. Biomedical Research Foundation, 36(6), pp. 403–409. doi: 10.2220/BIOMEDRES.36.403.

Ikeguchi, M. *et al.* (2001) 'Dihydropyrimidine dehydrogenase activity of cancerous and non-cancerous tissues in liver and large intestine', *Oncology Reports*. Spandidos Publications, 8(3), pp. 621–625. doi: 10.3892/OR.8.3.621.

Jacobs, B. A. W. *et al.* (2016) 'Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers', *British Journal of Clinical Pharmacology*. Wiley-Blackwell, 82(3), p. 706. doi: 10.1111/BCP.13007.

JG, M. et al. (2005) 'Genetic factors influencing pyrimidine-antagonist chemotherapy', *The pharmacogenomics journal*. Pharmacogenomics J, 5(4), pp. 226–243. doi: 10.1038/SJ.TPJ.6500320. Jiang, W. et al. (1997) 'Dihydropyrimidine dehydrogenase activity in hepatocellular carcinoma: implication in 5-fluorouracil-based chemotherapy.', *Clinical Cancer Research*, 3(3).

JL, G. *et al.* (1997) 'Inter- and intraindividual variation in dihydropyrimidine dehydrogenase activity in peripheral blood mononuclear cells', *Cancer chemotherapy and pharmacology*. Cancer Chemother Pharmacol, 40(2), pp. 117–125. doi: 10.1007/S002800050635.

K, A. et al. (2019) 'Orotate phosphoribosyltransferase as a predictor of benefit from S-1 adjuvant chemotherapy for cholangiocarcinoma patients', *Journal of gastroenterology and hepatology*. J Gastroenterol Hepatol, 34(6), pp. 1108–1115. doi: 10.1111/JGH.14477.

K, O. *et al.* (2011) 'DNA repair gene and MTHFR gene polymorphisms as prognostic markers in locally advanced adenocarcinoma of the esophagus or stomach treated with cisplatin and 5-fluorouracil-based neoadjuvant chemotherapy', *Annals of surgical oncology*. Ann Surg Oncol, 18(9), pp. 2688–2698. doi: 10.1245/S10434-011-1601-Y.

Kang, Y. K. and Cho, H. (2019) 'Perioperative FLOT: new standard for gastric cancer?', *The Lancet*. Lancet Publishing Group, pp. 1914–1916. doi: 10.1016/S0140-6736(18)33189-1.

Keam, B. *et al.* (2008) 'Modified FOLFOX-6 chemotherapy in advanced gastric cancer: Results of phase II study and comprehensive analysis of polymorphisms as a predictive and prognostic marker', *BMC Cancer*. BioMed Central, 8, p. 148. doi: 10.1186/1471-2407-8-148.

Kelly, S. E., Moher, D. and Clifford, T. J. (2016) 'Quality of conduct and reporting in rapid reviews: An exploration of compliance with PRISMA and AMSTAR guidelines', *Systematic Reviews*. Systematic Reviews, 5(1), pp. 1–19. doi: 10.1186/s13643-016-0258-9.

Kenji Dohden, Kenji Ohmura and Yoh Watanabe (1993) 'Sci-Hub | Ternary complex formation and reduced folate in surgical specimens of human adenocarcinoma tissues. Cancer, 71(2), 471–480 | 10.1002/1097-0142(19930115)71:2<471::aid-cncr2820710231>3.0.co;2-w', *Cancer*, 71(2), pp. 471–480.

Kim, S. *et al.* (2009) 'Functional analysis of pyrimidine biosynthesis enzymes using the anticancer drug 5-fluorouracil in Caenorhabditis elegans', *FEBS Journal*, 276(17), pp. 4715–4726. doi: 10.1111/J.1742-4658.2009.07168.X.

Kinoshita, M. et al. (2007) 'Gene Expression Profile of 5-Fluorouracil Metabolic Enzymes in Primary

Colorectal Cancer: Potential as Predictive Parameters for Response to Fluorouracil-based Chemotherapy', *Anticancer Research*, 27(2), pp. 851–856.

Koch, W. H. (2004) 'Technology platforms for pharmacogenomic diagnostic assays', *Nature Reviews Drug Discovery*. Nat Rev Drug Discov, pp. 749–761. doi: 10.1038/nrd1496.

Van Kuilenburg, A. B. P. *et al.* (2000) 'Clinical Implications of Dihydropyrimidine Dehydrogenase (DPD) Deficiency in Patients with Severe 5-Fluorouracil-associated Toxicity: Identification of New Mutations in the DPD Gene', *Clinical Cancer Research*, 6(12).

Van Kuilenburg, A. B. P. *et al.* (2001) 'Lethal Outcome of a Patient with a Complete Dihydropyrimidine Dehydrogenase (DPD) Deficiency after Administration of 5-Fluorouracil', *Clinical Cancer Research*, 7(5).

Kuilenburg, A. B. P. van, Lenthe, H. van and Gennip, A. H. van (2006) 'Activity of Pyrimidine Degradation Enzymes in Normal Tissues', *https://doi.org/10.1080/15257770600894576*. Taylor & Francis Group, 25(9–11), pp. 1211–1214. doi: 10.1080/15257770600894576.

Lam, S. W., Guchelaar, H. J. and Boven, E. (2016) 'The role of pharmacogenetics in capecitabine efficacy and toxicity', *Cancer Treatment Reviews*. W.B. Saunders Ltd, 50, pp. 9–22. doi: 10.1016/j.ctrv.2016.08.001.

Lee, S. J. *et al.* (2010) 'Induction of thymidine kinase 1 after 5-fluorouracil as a mechanism for 3'-deoxy-3'-[18F]fluorothymidine flare', *Biochemical Pharmacology*, 80(10), pp. 1528–1536. doi: 10.1016/J.BCP.2010.08.004.

LEUNG, H. W. C. and CHAN, A. L. F. (2015) 'Association and prediction of severe 5-fluorouracil toxicity with dihydropyrimidine dehydrogenase gene polymorphisms: A meta-analysis', *Biomedical Reports*. Spandidos Publications, 3(6), pp. 879–883. doi: 10.3892/br.2015.513.

Lin, S. *et al.* (2019) 'Polymorphisms of MTHFR and TYMS predict capecitabine-induced hand-foot syndrome in patients with metastatic breast cancer', *Cancer Communications*. Wiley-Blackwell, 39(1). doi: 10.1186/S40880-019-0399-Z.

Loriot, M. A. *et al.* (2018) 'Dihydropyrimidine déhydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: Update and recommendations of the French GPCO-Unicancer and RNPGx networks', *Bulletin du Cancer*. John Libbey Eurotext, 105(4), pp. 397–407. doi: 10.1016/J.BULCAN.2018.02.001.

Low, S. K., Zembutsu, H. and Nakamura, Y. (2018) 'Breast cancer: The translation of big genomic data to cancer precision medicine', *Cancer Science*. Blackwell Publishing Ltd, 109(3), pp. 497–506. doi: 10.1111/cas.13463.

Lu, Z. et al. (1998) 'Decreased dihydropyrimidine dehydrogenase activity in a population of patients with breast cancer: implication for 5-fluorouracil-based chemotherapy.', Clinical Cancer Research, 4(2).

M, D. *et al.* (2020) 'Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure', *Pharmaceuticals (Basel, Switzerland)*. Pharmaceuticals (Basel), 13(11), pp. 1–11. doi: 10.3390/PH13110416.

Mármol, I. et al. (2017) 'Colorectal carcinoma: A general overview and future perspectives in colorectal cancer', *International Journal of Molecular Sciences*. MDPI AG. doi: 10.3390/ijms18010197.

Mason, J. B. *et al.* (2009) 'Folate, cancer risk, and the Greek god, Proteus: a tale of two chameleons.', *Nutrition reviews*, 67(4), pp. 206–12. doi: 10.1111/j.1753-4887.2009.00190.x.

Matuschek, C. *et al.* (2011) 'The role of neoadjuvant and adjuvant treatment for adenocarcinoma of the upper gastrointestinal tract', *European Journal of Medical Research*. BioMed Central, 16(6), pp. 265–274. doi: 10.1186/2047-783x-16-6-265.

Mcmurrough, J. and Mcleod, H. L. (1996) 'Analysis of the dihydropyrimidine dehydrogenase polymorphism in a British population', *British Journal of Clinical Pharmacology*. Wiley-Blackwell, 41(5), p. 425. doi: 10.1046/J.1365-2125.1996.34212.X.

Meulendijks, D. *et al.* (2015) 'Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data', *The Lancet Oncology*, 16(16), pp. 1639–1650. doi: 10.1016/S1470-2045(15)00286-7.

ML, M.-F. *et al.* (2009) 'Ancestry informative markers and admixture proportions in northeastern Mexico', *Journal of human genetics*. J Hum Genet, 54(9), pp. 504–509. doi: 10.1038/JHG.2009.65.

Mori, R. *et al.* (2019) 'The inhibition of thymidine phosphorylase can reverse acquired 5FU-resistance in gastric cancer cells', *Gastric Cancer*. Springer Tokyo, 22(3), pp. 497–505. doi: 10.1007/S10120-018-0881-3.

Naguib, F. N. M., el Kouni, M. H. and Cha, S. (1985) 'Enzymes of Uracil Catabolism in Normal and Neoplastic Human Tissues', *Cancer Research*, 45(11 Part 1).

Natori, A. et al. (2017) 'Capecitabine in early breast cancer: A meta-analysis of randomised controlled trials', European Journal of Cancer. Elsevier Ltd, 77, pp. 40–47. doi: 10.1016/j.ejca.2017.02.024.

Nies, A. T. *et al.* (2015) 'Role of ABC Transporters in Fluoropyrimidine-Based Chemotherapy Response', in *Advances in Cancer Research*. Academic Press Inc., pp. 217–243. doi: 10.1016/bs.acr.2014.10.007.

NODA, E. et al. (2006) 'Expression of Genes for 5-FU-metabolizing Enzymes and Response to Irinotecan plus 5-FU-Leucovorin in Colorectal Cancer', *Anticancer Research*, 26(6C).

Noordhuis, P. *et al.* (2004) '5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers', *Annals of Oncology*. Elsevier, 15(7), pp. 1025–1032. doi: 10.1093/annonc/mdh264.

P, P. et al. (2018) 'Bifunctional activity of fused Plasmodium falciparum orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase', *Parasitology international*. Parasitol Int, 67(1), pp. 79–84. doi: 10.1016/J.PARINT.2017.04.003.

Page, M. J. et al. (2022) 'The PRISMA 2020 statement: an updated guideline for reporting systematic reviews', Revista Panamericana de Salud Publica/Pan American Journal of Public Health. Systematic

- Reviews, 46, pp. 1–11. doi: 10.26633/RPSP.2022.112.
- Peters, G. J. *et al.* (2002) 'Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism', *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease*. Elsevier, 1587(2–3), pp. 194–205. doi: 10.1016/S0925-4439(02)00082-0.
- Pizzorno, G. *et al.* (2002) 'Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update', *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease*. Elsevier, 1587(2–3), pp. 133–144. doi: 10.1016/S0925-4439(02)00076-5.
- Pratt, S. *et al.* (2005) 'The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites', *Molecular Cancer Therapeutics*. American Association for Cancer Research, 4(5), pp. 855–863. doi: 10.1158/1535-7163.MCT-04-0291.
- Quinonez, S. C. and Thoene, J. G. (2020) 'Dihydrolipoamide Dehydrogenase Deficiency', *GeneReviews*®. University of Washington, Seattle.
- R, H. *et al.* (2009) 'Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance', *Molecular cancer therapeutics*. Mol Cancer Ther, 8(5), pp. 1037–1044. doi: 10.1158/1535-7163.MCT-08-0716.
- R, M. et al. (1995) 'Human polymorphism in drug metabolism: mutation in the dihydropyrimidine dehydrogenase gene results in exon skipping and thymine uracilurea', *DNA and cell biology*. DNA Cell Biol, 14(1), pp. 1–6. doi: 10.1089/DNA.1995.14.1.
- Ramos-Esquivel, A., Chinchilla, R. and Valle, M. (2020) 'Association of C677T and A1298C MTHFR polymorphisms and fluoropyrimidine-induced toxicity in mestizo patients with metastatic colorectal cancer', *Anticancer Research*. International Institute of Anticancer Research, 40(8), pp. 4263–4270. doi: 10.21873/ANTICANRES.14428.
- Renck, D. *et al.* (2013) 'Design of Novel Potent Inhibitors of Human Uridine Phosphorylase-1: Synthesis, Inhibition Studies, Thermodynamics, and in Vitro Influence on 5-Fluorouracil Cytotoxicity', *Journal of Medicinal Chemistry*. American Chemical Society, 56(21), pp. 8892–8902. doi: 10.1021/JM401389U.
- Rudnick, E. W., Thareja, S. and Cherpelis, B. (2016) 'Oral therapy for nonmelanoma skin cancer in patients with advanced disease and large tumor burden: A review of the literature with focus on a new generation of targeted therapies', *International Journal of Dermatology*. Blackwell Publishing Ltd, pp. 249–258. doi: 10.1111/ijd.12961.
- S, K. *et al.* (2013) 'Predictive value of orotate phosphoribosyltransferase in colorectal cancer patients receiving 5-FU-based chemotherapy', *Molecular and clinical oncology*. Mol Clin Oncol, 1(3), pp. 453–460. doi: 10.3892/MCO.2013.71.
- S, M. et al. (1999) 'Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations', *Genomics*. Genomics, 58(3), pp. 310–312. doi: 10.1006/GENO.1999.5833.
- S, M. et al. (2007) 'Upregulation of enzymes metabolizing 5-fluorouracil in colorectal cancer', *Chemotherapy*. Chemotherapy, 53(1), pp. 36–41. doi: 10.1159/000098249.

- Sakamoto, K. et al. (2015) 'Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2'-deoxy-5-fluorouridine into DNA', *International Journal of Oncology*. Spandidos Publications, 46(6), p. 2327. doi: 10.3892/IJO.2015.2974.
- Sano, T. (2008) 'Adjuvant and neoadjuvant therapy of gastric cancer: A comparison of three pivotal studies', *Current Oncology Reports*. Curr Oncol Rep, 10(3), pp. 191–198. doi: 10.1007/s11912-008-0030-y.
- Santi, D. V. and McHenry, C. S. (1972) '5-Fluoro-2'-deoxyuridylate: covalent complex with thymidylate synthetase.', *Proceedings of the National Academy of Sciences of the United States of America*. National Academy of Sciences, 69(7), pp. 1855–1857. doi: 10.1073/pnas.69.7.1855.
- Sharma, V., Gupta, S. K. and Verma, M. (2019) 'Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs', *Cancer Chemotherapy and Pharmacology*. Springer Verlag, 84(6), pp. 1157–1166. doi: 10.1007/s00280-019-03936-w.
- Shen, X. M. et al. (2015) 'Relationship Between the DPD and TS mRNA Expression and the Response to S-1-Based Chemotherapy and Prognosis in Patients with Advanced Gastric Cancer', *Cell Biochemistry and Biophysics*. Humana Press Inc., 71(3), pp. 1653–1661. doi: 10.1007/s12013-014-0387-5.
- T, F. et al. (2018) 'Thymidine phosphorylase in cancer aggressiveness and chemoresistance', *Pharmacological research*. Pharmacol Res, 132, pp. 15–20. doi: 10.1016/J.PHRS.2018.03.019.
- T, O. *et al.* (2006) 'Prognostic impact of orotate phosphoribosyl transferase among 5-fluorouracil metabolic enzymes in resectable colorectal cancers treated by oral 5-fluorouracil-based adjuvant chemotherapy', *International journal of cancer*. Int J Cancer, 118(12), pp. 3084–3088. doi: 10.1002/IJC.21779.
- T, O. *et al.* (2014) 'Impact of 5-fluorouracil metabolizing enzymes on chemotherapy in patients with resectable colorectal cancer', *Oncology reports*. Oncol Rep, 32(3), pp. 887–892. doi: 10.3892/OR.2014.3299.
- Takeyama, H. *et al.* (2018) 'Thymidylate synthase expression in primary colorectal cancer as a predictive marker for the response to 5-fluorouracil- and oxaliplatin-based preoperative chemotherapy for liver metastases', *Molecular and Clinical Oncology*. Spandidos Publications, 9(1), p. 3. doi: 10.3892/MCO.2018.1623.
- Tan, I. B. *et al.* (2011) 'Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy', *Gastroenterology*. W.B. Saunders, 141(2). doi: 10.1053/j.gastro.2011.04.042.
- Testa, U., Castelli, G. and Pelosi, E. (2020) 'Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments', *Medical Sciences*. MDPI AG, 8(1), p. 18. doi: 10.3390/medsci8010018.
- Thorn, C. F. *et al.* (2011) 'Pharm GKB summary: Fluoropyrimidine pathways', *Pharmacogenetics and Genomics*. Lippincott Williams and Wilkins, pp. 237–242. doi: 10.1097/FPC.0b013e32833c6107.

TJ, W. et al. (2021) 'Impact of pretreatment dihydropyrimidine dehydrogenase genotype-guided fluoropyrimidine dosing on chemotherapy associated adverse events', *Clinical and translational science*. Clin Transl Sci, 14(4), pp. 1338–1348. doi: 10.1111/CTS.12981.

Toriumi, F. et al. (2004) 'Thymidylate Synthetase (TS) Genotype and TS/dihydropyrimidine Dehydrogenase mRNA Level as an Indicator in Determining Chemosensitivity to 5-Fluorouracil in Advanced Gastric Carcinoma', *Anticancer Research*, 24(4).

Van Triest, B. *et al.* (2000) 'Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors', *Annals of Oncology*, pp. 385–391. doi: 10.1023/A:1008351221345.

Tuchman, M. *et al.* (1985) 'Familial Pyrimidinemia and Pyrimidinuria Associated with Severe Fluorouracil Toxicity', *New England Journal of Medicine*. Massachusetts Medical Society, 313(4), pp. 245–249. doi: 10.1056/nejm198507253130407.

Tuchman, M. (1993) 'The Clinical Aspects of Inherited Defects in Pyrimidine Degradation', in *Molecular Genetics, Biochemistry and Clinical Aspects of Inherited Disorders of Purine and Pyrimidine Metabolism.* Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 168–175. doi: 10.1007/978-3-642-84962-6 23.

Uncu, D. *et al.* (2013) 'Results of adjuvant FOLFOX regimens in stage III colorectal cancer patients: Retrospective analysis of 667 patients anatolian society of medical oncology', *Oncology (Switzerland)*. Oncology, 84(4), pp. 240–245. doi: 10.1159/000336902.

Vodenkova, S. et al. (2020) '5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future', *Pharmacology and Therapeutics*. Elsevier Inc., 206. doi: 10.1016/j.pharmthera.2019.107447.

W, I. *et al.* (2003) 'Both gene expression for orotate phosphoribosyltransferase and its ratio to dihydropyrimidine dehydrogenase influence outcome following fluoropyrimidine-based chemotherapy for metastatic colorectal cancer', *British journal of cancer*. Br J Cancer, 89(8), pp. 1486–1492. doi: 10.1038/SJ.BJC.6601335.

Waldman, A. and Schmults, C. (2019) 'Cutaneous Squamous Cell Carcinoma', *Hematology/Oncology Clinics of North America*. W.B. Saunders, pp. 1–12. doi: 10.1016/j.hoc.2018.08.001.

Wörmann, B. *et al.* (2020) 'Dihydropyrimidine Dehydrogenase Testing prior to Treatment with 5-Fluorouracil, Capecitabine, and Tegafur: A Consensus Paper', *Oncology Research and Treatment*, November, pp. 628–636. doi: 10.1159/000510258.

Yamada, H., Iinuma, H. and Watanabe, T. (2008) 'Prognostic value of 5-fluorouracil metabolic enzyme genes in Dukes' stage B and C colorectal cancer patients treated with oral 5-fluorouracil-based adjuvant chemotherapy', *Oncology Reports*. Spandidos Publications, 19(3), pp. 729–735. doi: 10.3892/OR.19.3.729.

Yasuno, H. *et al.* (2013) 'Predictive markers of capecitabine sensitivity identified from the expression profile of pyrimidine nucleoside-metabolizing enzymes', *Oncology Reports*. Spandidos Publications, 29(2), pp. 451–458. doi: 10.3892/OR.2012.2149.

Genetics and Molecular Research 24 (2): gmr24124

-

Yeh, C. C. et al. (2017) 'Polymorphisms of MTHFR C677T and A1298C associated with survival in patients with colorectal cancer treated with 5-fluorouracil-based chemotherapy', *International Journal of Clinical Oncology*. Springer Tokyo, 22(3), pp. 484–493. doi: 10.1007/S10147-016-1080-Z.

Yoshikawa, T. *et al.* (2019) 'Comprehensive biomarker analyses identifies HER2, EGFR, MET RNA expression and thymidylate synthase 5'UTR SNP as predictors of benefit from S-1 adjuvant chemotherapy in Japanese patients with stage II/III gastric cancer', *Journal of Cancer*. Ivyspring International Publisher, 10(21), p. 5130. doi: 10.7150/JCA.34741.

YT, H. et al. (2020) 'Metabolites modulate the functional state of human uridine phosphorylase I', *Protein science: a publication of the Protein Society*. Protein Sci, 29(11), pp. 2189–2200. doi: 10.1002/PRO.3939.

Zavala, V. A. et al. (2019) 'Genetic epidemiology of breast cancer in Latin America', Genes. MDPI AG, 10(2). doi: 10.3390/genes10020153.