
Genetics and Molecular Research 24 (1): gmr24126

Association of Mutations and Polymorphisms in 
the Lipoprotein Lipase Gene with Coronary Heart 
Disease in Iraqi Patients at Tikrit Hospital, 2024

Abdulqader Wael Rasheid¹, Asmaa Ghafer², Shahad Tariq Hamad³*, Riyam 
Basim Ali⁴, and B.D.H. Al-Khayali⁵

1Ministry of Education, Directorate of Salah Edin, Tikrit, Iraq. 
2Department of Microbiology, College of Medicine, Ibn Sina University of Medical 
and Pharmaceutical Sciences, Baghdad, Iraq. 
3Department of Biotechnology, College of Science, University of Baghdad, Baghdad, 
Iraq. 
4Assistant Professor, Institute of Genetic Engineering and Biotechnology, University 
of Baghdad, Iraq.
5Department of Biotechnology, College of Science, University of Baghdad, Iraq. 

Corresponding Author: Shahad Tariq Hamad
Email: shahad.t@sc.uobaghdad.edu.iq

Genet. Mol. Res. 24 (1): gmr24126
Received March 07, 2025
Accepted March 26, 2025
Published March 31, 2025
DOI http://dx.doi.org/10.4238/gmr24126

ABSTRACT. Background: Diabetes mellitus (DM) is a multifactorial 
metabolic disorder characterized by chronic hyperglycemia and 
disturbances in carbohydrate, fat, and protein metabolism due to defects 
in insulin secretion, action, or both. Previous investigations have explored 
the relationship between lipase gene polymorphisms, particularly those 
affecting cholesteryl ester transfer, and DM risk, though results remain 
controversial. This study aimed to evaluate whether specific lipase gene 
variants are associated with lipid profile abnormalities in Iraqi diabetic 
patients and to examine potential links with coronary artery disease (CAD).
Methods: A meta-analysis of existing studies clarified the association 
between the lipase gene TaqIB polymorphism and high-density lipoprotein 
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INTRODUCTION

Lipoprotein lipase is a key enzyme in the regulation of lipid fuel disposal (Goldberg IJ, 
2019) and it provides fatty acids for tissue utilization by catalyzing the hydrolysis of triacylglycerol 
circulating in triglyceride-rich lipoproteins (Auer RC, 2016). Anchored to the surface of the 
capillary endothelium by glycosaminoglycan, lipoprotein lipase hydrolyzes plasma chylomicrons 
and VLDL to remnant particles (Toth PP, 2016). As such, lipoprotein lipase is the rate-limiting 
enzyme responsible for the removal of plasma triglyceride-rich lipoproteins from the circulation 
(Murthy VJP, 1996). Although expressed in most tissues of the body, in particular, skeletal and heart 
muscle and adipose tissue, lipoprotein lipase is also expressed and secreted by macrophages (Kim 
MS, 2012). Lipoprotein lipase is important for the transfer of phospholipids and Apo lipoproteins 
to HDL and, thus, is critical for the formation of this particle (Blanchette-Mackie EJ, 1989). Apo 
lipoprotein C-II is an essential cofactor for the activation of lipoprotein lipase activity, whereas Apo 
lipoprotein C-III inhibits activity (Beigneux AP, 2019).

A number of polymorphisms in the lipoprotein lipase gene have been associated with 
varying degrees of plasma lipoprotein levels and the severity of coronary artery disease (Auwerx J, 
1992). Low levels of lipoprotein lipase activity, as seen with a partial deficiency of lipoprotein lipase, 
have been associated with the progression of coronary atherosclerosis (Kumari A, 2021). Decreased 
lipoprotein lipase activity and the resultant elevated triglyceride levels and reduced HDL cholesterol 
levels increase the risk of ischemic heart disease (Gunn KH, 2020). Low HDL cholesterol levels 
reduce reverse cholesterol transport. Elevated triglyceride levels indicate that lipoprotein remnants 
and partially delipidized lipoproteins of differing size and composition, such as VLDL, IDL, 
chylomicron remnants, and lipoprotein B-containing particles (LP-B:C, LP-B:C:E, and LP-A-
II:B:C:D:E), are present in the plasma (Rodrigues B, 1997).

cholesterol (HDL-C) levels in DM patients. A cross-sectional study was 
conducted with 160 Iraqi participants (90 DM patients and 70 controls). 
Serum lipids, including total cholesterol (TC), triglycerides (TG), low-
density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein 
cholesterol (VLDL-C), were measured and compared between groups.
Results: DM patients exhibited significantly higher TC, TG, LDL-C, and 
VLDL-C levels (P<0.0001) and markedly lower HDL-C (P<0.0001) than 
controls. The study group was predominantly male (75.55%), possibly 
reflecting healthcare-seeking trends. Among examined single nucleotide 
polymorphisms, the rs708272 (g.5454G>A) variant influenced HDL-C 
levels. Moreover, the LPL HindIII H+H+ genotype and H+ allele, along 
with the Ser447X XX genotype, were significantly linked to CAD risk, 
whereas the PvuII polymorphism showed no association.
Conclusions: Specific lipase gene polymorphisms may contribute to 
dyslipidemia in DM and serve as potential biomarkers for CAD risk in the 
Iraqi population. Further research is needed to confirm these findings in this 
cohort.

Key words: Lipase polymorphism; Coronary heart disease; Cholesterol; 
Triglyceride; RFLP.
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Consistent with these findings are data from 2 large serial coronary angiographic clinical 
trials indicating that Apo lipoprotein C-III, a marker of triglyceride-rich lipoprotein metabolism and 
the clearance of chylomicron and VLDL particles (allan CM, 2017) is an independently significant 
predictor of the progression of coronary atherosclerosis (amps L, 1990) . The abnormal expression 
of LPL is part of some pathophysiological processes, such as diabetes, chylomicronemia, obesity, 
and atherosclerosis (Voss CV, 2011). The LPL gene is located on chromosome 8p22. Over 100 
mutations have been found in this gene (Jensen MK, 2009). A few studies have reported that the 
polymorphisms of HindIII, Ser447X and PvuII were associated with the risk of CAD (Jensen MK, 
2009; Wion KL, 1987; Sayad A, 2012). However, these results were also controversial (Tanguturi 
PR, 2013; Abu-Amero KK, 2003). Some studies found no association between these gene variants 
of LPL and the risk of CAD (Al-Jafari AA, 2012). These data implicate the inefficient removal of 
triglyceride-rich lipoproteins by lipoprotein lipase in the progression of atherosclerosis (Izar MC, 
2009). Decreased removal of chylomicrons and VLDL particles prolongs circulatory residence 
time and, therefore, increases the exposure of the arterial wall to these thermogenic particles (Van 
Bockxmeer FM, 2001). Low lipoprotein lipase activity may also contribute to atherosclerosis by 
promoting postprandial lipemia (Abdel Hamid MM, 2015; Bahrami M, 2015). LPL gene, Asp9Asn, 
Asn291Ser, and S447X are the most important mutations described because of their greater frequency 
and influence on susceptibility to atherosclerosis (Corella D, 2002). The LPL D9N and LPL N291S 
variants have been associated with an adverse lipid profile, but the association with cardiovascular 
disease has been less consistent (Socquard E, 2006) D9N and N291S have been associated in a meta-
analysis with an increase in triglycerides of 20% and 31%, respectively (Nicklas BJ, 2000), and 
S447X was associated with reduced plasma triglyceride and increasing HDL-C (Chen Q, 2008). The 
study aimed to determine risk factors and the association of lipid profiles with LPL gene in patients 
with coronary artery disease and healthy Sudanese population.

MATERIAL AND METHODS

Study population

The study included a total of 180 participants, comprising 100 individuals diagnosed with 
coronary disease and 80 healthy individuals selected as controls. The age range of the participants 
was between 17 and 55 years, and both groups were matched in terms of gender. Volunteers were 
recruited from the Iraqi population through a private clinic.

Sample collection

At the time of clinical examination, 6 ml of blood samples were collected from each subject 
and divided into two parts: In the first part 2 ml of blood has been collected in EDTA tubes for DNA 
extraction, while in the second part 4 ml was taken in a normal test for separation of the serum.

Laboratory measurements

Serum lapse activity was measured by enzymatic colorimetric methods (Bankaitis VA, 
2020). Lipid profile TC, HDL-C and TG levels were measured by enzymatic colorimetric methods 
(Handley SA, 2024), and the LDL and VLDL was estimated by Fried Ewald formula (Khongwichit 
S, 2023).
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Determination of lipase gene polymorphism 

This case control study was designed to study risk factors, lipid profile in CHD patients 
and their association with lipoprotein lipase gene in Sudan. Informed consent was obtained from 
all participants. Detailed demographic and risk factors for CVD were collected using a structured 
questionnaire. Lipids were analyzed by MINDRAY BS-200 analyzer (MINDRAY, Shenzhen, 
China). Genomic DNA was extracted from blood by kits and PCR-RFLP was applied to detect 
D9N, N291 and S447X lipoprotein lipase genotype, using TaqI, RsaI and Mnl1 restriction enzyme, 
respectively. Statistical analyses were performed using SPSS v.26.                             

RESULT AND DISCUSSION

Serum lipid results of the population study 

In this study, 180 Iraqi participants were recruited, 100 patients with CHD and 80 as a 
control. Table 1 shows serum lipase results of the population study and lipid profile, (TC, TG, 
LDL-C, and VLDL-C) were significantly higher (P<0.0001) except HDL-C was lower in the 
patient group compared to the control group (P<0.0001). The resulted shown abnormalities of 
lipoprotein metabolism are the one of factors contributing to dyslipidemia risk in patients with 
CHD disease, and diabetic dyslipidemia includes not only quantitative but also qualitative and 
kinetic lipoprotein abnormalities that are inherently thermogenic (Ukkola O, 2021). The primary 
(characteristic) quantitative abnormalities are hypertriglyceridemia, accompanied by prolonged 
postprandial hyperlipidemia and increased levels of remnant particles (related to the increased 
production of triacylglycerol-rich lipoproteins and a reduction in the rate of catabolism of 
triacylglycerol-rich lipoproteins), and decreased HDL-cholesterol levels secondary to an increased 
rate of HDL catabolism (AshokKumar M, 2010). The most frequent qualitative abnormalities, which 
are potentially thermogenic, include an increase in large VLDL particle size (VLDL1); a greater 
proportion of small, dense LDL particles; an augmented susceptibility of LDLs to oxidation; an 
increase in triacylglycerol content of both LDL and HDL; and glycation of Apo lipoproteins  (Abd 
El-Aziz TA, 2011). Although levels of LDL may be normal in patients with CHD disease, LDL 
plasma residence time is increased due to a slower turnover rate, and this may infer the promotion 
of lipid deposition within artery walls. Some factors, such as insulin resistance and possibly some 
adipokines (e.g. adiponectin) and hyperglycemia are involved in the pathophysiology of diabetic 
dyslipidemia (Tripathi R, 2011).

Parameter Patients (No. 90) 
Mean ± SD

Control (No. 70) 
Mean ± SD P value

Lipase  (UI/L) 162.3 ± 10.625 90.1 ± 11.279 0.001**
HDL-C (mg/dL) 41.236 ± 10.792 51.5 ± 7.964 0.001**
TC (mg/dL) 168.512 ± 5.378 147.9 ± 2.352 0.001**
LDL-C (mg/dL) 103.025 ± 5.374 71.2 ± 8.722 0.001**
VLDL-C (mg/dL) 27.409 ± 9.510 31.985 ± 5.638 0.002**
TG (mg/dL) 137.479 ± 7.302 74.8 ± 10.603 0.001**

Table 1. Comparison between lipid levels of patients and control group.
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Genotypes and alleles frequency

PCR-RFLP analysis of the lipase gene polymorphism identified three genotypic variants: 
B1B1, B1B2, and B2B2, the PCR-RFLP products illustrate the polymorphism of the lipase gene. 
Lane (M) contains a 100 bp DNA ladder, lanes (3 & 4) correspond to the B1B1 homozygote (361 & 
174 bp bands), lanes (1 & 6) represent the B1B2 heterozygote (535, 361 & 174 bp bands), and lanes 
(2 & 5) show the B2B2 homozygote (535 bp band) (Figure 1).

Figure 1. The LIPASE GENE gene polymorphism of PCR-RFLP products.

By PCR-RFLP analysis of the lipase polymorphism, three types of genotypes (B1B1, B1B2, 
B2B2) have been obtained. Where showing LIPASE GENE gene polymorphism of PCR-RFLP 
products. Lane (M) 100 bp DNA ladder, lane (3 & 4) B1B1 homozygote (361 & 174 bands), lane (1 
& 6) B1B2 heterozygote (535, 361 & 174 bp bands), lane (2 & 5) B2B2 homozygote (535 bp band).

Among the population 53.1% were male, 22% had family history of CHD, 42.6% hypertension, 
41.6% diabetes, 18.2% smoking and 5.3% alcohol. The low smoking and alcohol consumption 
may be due to cultural denial of smoking and alcohol in our community especially among females 

(AbdEl-Aziz TA, 2023). Patients show lower TC and LDL-C levels compared to controls. African 
ancestry was significantly associated with decreased TC, LDL and triglycerides (Daoud MS, 2013). 
Allele frequency of LPL D9N, N291S and S447X carrier was 4.2%, 30.7% and 7.1%, respectively 
(Table 1). The carrier of frequency of N291S was ranging from 2% to 5% in different populations 
(Tanguturi PR, 2013). While for S447X was 18% in patients with CAD and 23% in the control 

(Ferencak G, 2003). In Tunisian population the frequency of p.Asp9Asn variation was 10.37% in 
CAD patients versus 3.66% in controls, and for p.Ser447X was 8.8% in CAD patients versus 13.7% 
in controls (Li Y, 2014). No significant (P <0.05) association in lipid profiles was found between 
carriers (patient) and non-carriers (control) of D9N, N291S (Table 2).

Parameter Male (No. 77)
Mean ± SD

Female (No. 23)
Mean ± SD P value

Lipase  (UI/L) 175.2 ± 11.423 158.1 ± 11.351 0.001**
HDL-C (mg/dL) 32.604 ± 10.822 37.409 ± 10.751 0.031**
TC (mg/dL) 162.980 ± 6.104 188.045 ± 42.777 0.049**
LDL-C (mg/dL) 92.936 ± 5.827 132.663 ± 8.893 0.001**
VLDL-C (mg/dL) 39.767 ± 5.11 27.8364 ± 5.507 0.003**
TG (mg/dL) 137.129 ± 6.189 139.181 ± 5.435 0.847

Table 2. Serum lipid levels of the patients according to gender.
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The  result  of  this  study  showed  significant increase in the levels of total cholesterol 
(p=0.888) in  diabetic  patients  compared  to  non-diabetic subjects,  this  increase  it  may  be  due  
to  an increase  in  the  plasma  concentration  of  VLDL and  LDL,  which  may be  due to  increase  
hepatic production  of  VLDL  or  decreased  removal  of VLDL and LDL from the circulation  

(Clee SM, 2000). The  study  suggest  significant  increased  level  of LDL (p=0775) in diabetic 
patients and higher level of triglycerides (p=0 .327) in diabetic patients may due to overproduction  
of  VLDL  lead  to  increased plasma  levels  of  triglyceride  which,  via  an exchange  process  
mediated  by  cholesterol  ester transfer protein,  result  in  lower levels  of high  density  lipoprotein  
HDL-cholesterol,  also may  be  due  to  insulin  deficiency  which  results faulty  glucose  utilization  
causes  hyperglycemia and  mobilization  of  fatty  acids  from  adipose tissue. The fatty acids from  
adipose  tissue  are  mobilized  for  energy purpose  and  excess fatty acid  is  accumulated in the 
liver, which are converted to triglyceride (Preiss-Landl K, 2002). The  most  frequent  alterations  of  
lipid  profile were  combination  of  elevated  TGs  (VLDL-TG), decreased  clearance  of  TG-rich  
lipoproteins and decreased high-density lipoproteins HDL (Zhang Y, 2016) (Table 3).

Table 4 shows results of the genotype and allelic frequencies in (%) and number of patients 
having each genotype of study population. The distribution of genotype in case and control group was 
conducted in the Hardy-Weinberg equilibrium. The results show that there is a significant difference 
(p value 0.001) between frequency of genotypes and alleles of LIPASE GENE polymorphism in the 
patient and control groups. Patients with B2B2 genotype (22.86%) were significantly lower while 
both the B1B1 (8.57%) and B1B2 (68.57%) genotypes were higher compared with the control. Also 
we observed that there is an increasing in the B1 allele frequency on the contrary B2 allele in the 
patient compared to the control group (P <0.05). 

Parameter B1B1 (No. 49) 
Mean ± SD

B1B2 (No. 25) 
Mean ± SD

B2B2 (No. 26) Mean 
± SD P value

Lipase  (UI/L) 163.3 ± 10.421 166.1 ± 11.266 176.2 ± 10.867 0.001**
HDL-C (mg/dL) 32.999 ± 4.486 34.2631±11.94 31.227 ±11.633 0.682
TC (mg/dL) 166.973 ± 5.966 169.988 ± 4.903 174.023 ± 5.347 0.888
LDL-C (mg/dL) 105.325 ± 5.844 96.720 ± 5.926 105.965 ± 9.628 0.775
VLDL-C (mg/dL) 35.656 ± 3.704 40.366 ± 6.612 38.682 ± 5.848 0.417
TG (mg/dL) 139.658 ± 7.761 143.3012 ± 5.267 122.246 ± 3.125 0.327

Table 3. Serum lipid levels in patients and control according to LIPASE GENE polymorphism.

Table 4. Genotype and allele frequency distribution in patients and controls group.

Genotypes
Patients
No. (100)

Control
No. (80) P value OR (95% CI)

No. % No. %
B1B1 49 49 13 9.57

0.001**
7.27 2.48-21.92

B1B2 25 25 49 68.67 0.51 0.23-1.16
B2B2 24 24 18 33.86 1 Ref. -
Alleles No. % No. % P value OR (95% CI)
B1 125 66.63 60 43.85 0.002** 2.665 1.679 to 4.216
B2 65 33.37 80 56.15 1 Ref. -
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The S447X genotype is shown in Table 1. The D9N and N291S variants have been linked to 
elevated plasma triglyceride (TG) levels (Ani A, 2010). In contrast, the S447X variant is associated 
with lower TG levels, higher HDL levels, and a reduced risk of coronary heart disease (CHD) 
(Ehrhardt N, 2014). Among a healthy Tunisian population, individuals carrying the p.Asp9Asn 
substitution in a heterozygous state exhibited a significant increase in total cholesterol and a decrease 
in HDL (Péterfy M, 2012). This suggests that heart diseases are common in Iraq and share similar 
risk factors with other regions. However, lipoprotein lipase polymorphism was not found to be 
associated with CHD incidence. In this study, we first performed a meta-analysis for the association 
between LPL polymorphism and CAD risk. It was found that the LPL HindIII polymorphism was 
positively correlated with CAD risk. In contrast, the LPL PvuII polymorphism had no association 
with CAD risk. Further research on the association between LPL Ser447X polymorphism and CAD 
risk is still needed.

The LPL gene spans over 30 kb, comprising 10 exons and nine introns on chromosome 8p22. 
Its cDNA is translated to a 475 amino acid proteins, including a 27 amino acid signal peptide. Several 
sequence variations, including BamHI, PvuII, HindIII, BstNI and Ser447X sites, have been identified 
by restriction fragment length polymorphisms (RFLPs) in the LPL gene (Roberts BS, 2018). Among 
these variations, the HindIII, Ser447X and PvuII polymorphisms were the most common and may 
be associated with profound alterations in plasma lipids. Recently, some studies have reported that 
the HindIII, Ser447X and PvuII gene plolymorphisms decreased plasma LPL activity. Furthermore, 
decreased plasma LPL activity was associated with elevated TG and low HDL-C levels in patient 
samples, which can contribute to CAD risk (Qi L, 2017). The HindIII polymorphism is located in 
intron 8, 495 bp from the splice-donor site, and it can affect RNA splicing (Hwang J, 2018). The 
H-allele of the HindIII polymorphism could cause either enhanced enzyme activity or more efficient 
lipid binding (Gunn KH, 2020). The Ser447X polymorphism is located in intron 9, where cytosine 
(C) is replaced by guanine (G), at position 1959. This polymorphism leads to the suppression of 
the final two amino acids, serine and glycine at position 447 of protein (Shi G, 2017). The PvuII 
polymorphism is located on intron 6, 1.57 kb from the SA site. The region containing the PvuII site 
resembles the splicing site in its homology to the consensus sequence required for 39-splicing and 
the formation of the lariat structure, suggesting that C497-T change may interfere with the correct 
splicing of messenger RNA (Kim GH, 2018).

The association between the LPL polymorphism and CAD has been researched for thirty 
years. However, the results to date have been inconsistent. Currently, there are no large scale 
case control studies for LPL polymorphism and CAD risk. Thus, we performed a meta-analysis 
to study the association between LPL polymorphism and CAD risk. To analyze the association 
between the HindIII polymorphism and CAD risk, we reviewed seven studies including 1853 cases 
and 1171 controls that were conducted from 2000 to 2015. The analysis revealed that the HindIII 
H+H+ genotype and the H+ allele genotype were significantly associated with the risk of CAD. These 
results were consistent with previous reports that HindIII is the most common polymorphism of LPL 
associated with CAD risk. However, for the Ser447X polymorphism, the association with CAD was 
only found in the XX genotype; the other genotype had no significant association. The difference in 
the XX genotype may have been caused by publication bias because two studies reported no events 
in the XX genotype (Bhattacharya A, 2018).

However, this study has some limitations. First, the included studies were moderate due to 
our inclusion and exclusion criteria, potentially introducing random error. Second, results relied on 
unadjusted effect estimates, while a more precise analysis would account for factors like age, sex, 
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drinking, and smoking. Third, the absence of individual-level data limited further analysis of genetic 
variations and metabolic traits (Ghafer A, 2023; Hamad ST, 2023).

CONCLUSIONS

Our findings indicate that the LPL polymorphisms HindIII H+H+ genotype and H+ allele 
genotype are significantly linked to an increased risk of CAD. Additionally, the Ser447X XX 
genotype showed a significant association with CAD risk. However, further research is necessary 
to validate these results. Conversely, no correlation was observed between the PvuII polymorphism 
and CAD risk. Based on our analysis, the LPL HindIII polymorphism may serve as a potential 
biomarker for assessing CAD risk.
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