Research Article

Restoration over time and sustainability of Schinus terebinthifolius Raddi.

Published: May 31, 2017
Genet. Mol. Res. 16(2): gmr16029669 DOI:
Cite this Article:
S.V. Alvares-Carvalho, R. Silva-Mann, I.B. Gois, M.F.V. Melo, A.S. Oliveira, R.A. Ferreira, L.J. Gomes (2017). Restoration over time and sustainability of Schinus terebinthifolius Raddi.. Genet. Mol. Res. 16(2): gmr16029669.


The success of recovery programs on degraded areas is dependent on the genetic material to be used, which should present heterozygosity and genetic diversity in native and recovered populations. This study was carried out to evaluate the model efficiency to enable the recovery of a degraded area of the Lower São Francisco, Sergipe, Brazil. The target species for this study was Schinus terebinthifolius Raddi. Three populations were analyzed, the recovered area, seed-tree source population, and native tree population border established to the recovered area. The random amplified polymorphic DNA (RAPD) markers were used for diversity analysis. Genetic structure was estimated to evaluate the level of genetic variability existent in each population. There was no correlation between the spatial distribution and the genetic distances for all trees of the recovered area. The heterozygosity present in the recovered population was higher than the native tree population. The seed-tree source population presents genetic bottlenecks. Three clusters were suggested (ΔK = 3) with non-genetic structure. High intra-population genetic variability and inter-population differentiation are present. However, gene flow may also introduce potentially adaptive alleles in the populations of the recovered area, and the native population is necessary to ensure the sustainability and maintenance of the populations by allelic exchange.