Research Article

Complete mitochondrial genome of Cabot’s tragopan, Tragopan caboti (Galliformes: Phasianidae)

Published: June 22, 2010
Genet. Mol. Res. 9 (2) : 1204-1216 DOI: https://doi.org/10.4238/vol9-2gmr820
Cite this Article:
X.Z. Kan, X.F. Li, Z.P. Lei, M. Wang, L. Chen, H. Gao, Z.Y. Yang (2010). Complete mitochondrial genome of Cabot’s tragopan, Tragopan caboti (Galliformes: Phasianidae). Genet. Mol. Res. 9(2): 1204-1216. https://doi.org/10.4238/vol9-2gmr820
2,159 views

Abstract

Cabot’s tragopan, Tragopan caboti, is a globally threatened pheasant endemic to southeast China. The complete mitochondrial genome of Cabot’s tragopan was sequenced. The circular genome contains 16,727 bp, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, a structure very similar to that of other Galliformes. As found in other vertebrates, most of these genes code on the H-strand, except for the NADH dehydrogenase subunit 6 (nad6) and eight tRNA genes (Gln, Ala, Asn, Cys, Tyr, Ser(UCN), Pro, Glu). All protein-coding genes initiated with ATG, except for cox1, which began with GTG, and had a strong skew of C vs G (GC skew = -0.29 to -0.73). One extra ‘C’ nucleotide was found in the NADH dehydrogenase subunit 3 (nad3). All the tRNA gene sequences have the potential to fold into typical cloverleaf secondary structures. Conserved sequences in three domains were identified within the control region (D-loop). These results provide basic information for phylogenetic analyses among Galliform birds, and especially Tragopan species.

Cabot’s tragopan, Tragopan caboti, is a globally threatened pheasant endemic to southeast China. The complete mitochondrial genome of Cabot’s tragopan was sequenced. The circular genome contains 16,727 bp, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, a structure very similar to that of other Galliformes. As found in other vertebrates, most of these genes code on the H-strand, except for the NADH dehydrogenase subunit 6 (nad6) and eight tRNA genes (Gln, Ala, Asn, Cys, Tyr, Ser(UCN), Pro, Glu). All protein-coding genes initiated with ATG, except for cox1, which began with GTG, and had a strong skew of C vs G (GC skew = -0.29 to -0.73). One extra ‘C’ nucleotide was found in the NADH dehydrogenase subunit 3 (nad3). All the tRNA gene sequences have the potential to fold into typical cloverleaf secondary structures. Conserved sequences in three domains were identified within the control region (D-loop). These results provide basic information for phylogenetic analyses among Galliform birds, and especially Tragopan species.