Research Article

Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes

Published: June 30, 2003
Genet. Mol. Res. 2 (2) : 229-259
Cite this Article:
(2003). Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes. Genet. Mol. Res. 2(2): gmr0052.
1,851 views

Abstract

Two populations of the mosquito Psorophora columbiae from the central Andean area of Colombia and one population of Ps. toltecum from the Atlantic coast of Colombia were analyzed for 11 isoenzyme markers. Psorophora columbiae and Ps. toltecum are two of the main vectors of Venezuelan equine encephalitis. We found no conspicuous genetic differences between the two species. The relatively high gene flow levels among these populations indicate that these are not two different species or that there has been recent divergence between these taxa. In addition, no global differential selection among the loci was detected, although the α-GDH locus showed significantly less genetic heterogeneity than the remaining loci, which could mean that homogenizing natural selection acts at this locus. No isolation by distance was detected among the populations, and a spatial population analysis showed opposite spatial trends among the 31 alleles analyzed. Multiregression analyses showed that both expected heterozygosity and the average number of alleles per locus were totally determined by three variables: altitude, temperature and size of the human population at the locality. Individually, the expected heterozygosity is more related to these three variables than to the average number of alleles.

Two populations of the mosquito Psorophora columbiae from the central Andean area of Colombia and one population of Ps. toltecum from the Atlantic coast of Colombia were analyzed for 11 isoenzyme markers. Psorophora columbiae and Ps. toltecum are two of the main vectors of Venezuelan equine encephalitis. We found no conspicuous genetic differences between the two species. The relatively high gene flow levels among these populations indicate that these are not two different species or that there has been recent divergence between these taxa. In addition, no global differential selection among the loci was detected, although the α-GDH locus showed significantly less genetic heterogeneity than the remaining loci, which could mean that homogenizing natural selection acts at this locus. No isolation by distance was detected among the populations, and a spatial population analysis showed opposite spatial trends among the 31 alleles analyzed. Multiregression analyses showed that both expected heterozygosity and the average number of alleles per locus were totally determined by three variables: altitude, temperature and size of the human population at the locality. Individually, the expected heterozygosity is more related to these three variables than to the average number of alleles.

Download: