Research Article

Isolation and characterization of microsatellite markers for Dendranthema morifolium (Asteraceae) using next-generation sequencing

Published: October 05, 2016
Genet. Mol. Res. 15(4): gmr8765 DOI: https://doi.org/10.4238/gmr.15048765
Cite this Article:
W.J. Yuan, S. Ye, L.H. Du, S.M. Li, X. Miao, F.D. Shang, W.J. Yuan, S. Ye, L.H. Du, S.M. Li, X. Miao, F.D. Shang (2016). Isolation and characterization of microsatellite markers for Dendranthema morifolium (Asteraceae) using next-generation sequencing. Genet. Mol. Res. 15(4): gmr8765. https://doi.org/10.4238/gmr.15048765
3,070 views

Abstract

Dendranthema morifolium (Asteraceae) is a perennial herbaceous plant native to China. A long history of artificial crossings may have resulted in complex genetic background and decreased genetic diversity. To protect the genetic diversity of D. morifolium and enabling breeding of new D. morifolium cultivars, we developed a set of molecular markers. We used pyrosequencing of an enriched microsatellite library by Roche 454 FLX+ platform, to isolate D. morifolium simple sequence repeats (SSRs). A total of 32,863 raw reads containing 2251 SSRs were obtained. To test the effectiveness of these SSR markers, we designed primers by randomly selecting 100 novel SSRs, and amplified them across 60 cultivars representing five different petal shape groups. Sixteen SSRs were polymorphic with the number of alleles ranging from 6 to 19, and their expected and observed heterozygosities ranging from 0.477 to 0.848, and 0.250 to 0.804, respectively. The polymorphism information content ranged from 0.459 to 0.854 and the inbreeding coefficient ranged from -0.119 to 0.759. An unweighted pair-group method arithmetic average analysis was performed to survey the phylogenetic relationships of these 60 cultivars and five clusters were identified. These markers can be used for investigating genetic relationships and identifying elite alleles through linkage and association analyses.

Dendranthema morifolium (Asteraceae) is a perennial herbaceous plant native to China. A long history of artificial crossings may have resulted in complex genetic background and decreased genetic diversity. To protect the genetic diversity of D. morifolium and enabling breeding of new D. morifolium cultivars, we developed a set of molecular markers. We used pyrosequencing of an enriched microsatellite library by Roche 454 FLX+ platform, to isolate D. morifolium simple sequence repeats (SSRs). A total of 32,863 raw reads containing 2251 SSRs were obtained. To test the effectiveness of these SSR markers, we designed primers by randomly selecting 100 novel SSRs, and amplified them across 60 cultivars representing five different petal shape groups. Sixteen SSRs were polymorphic with the number of alleles ranging from 6 to 19, and their expected and observed heterozygosities ranging from 0.477 to 0.848, and 0.250 to 0.804, respectively. The polymorphism information content ranged from 0.459 to 0.854 and the inbreeding coefficient ranged from -0.119 to 0.759. An unweighted pair-group method arithmetic average analysis was performed to survey the phylogenetic relationships of these 60 cultivars and five clusters were identified. These markers can be used for investigating genetic relationships and identifying elite alleles through linkage and association analyses.