Research Article

Genetic diversity and population structure of Fenneropenaeus penicillatus determined by mitochondrial DNA analyses

Published: August 29, 2016
Genet. Mol. Res. 15(3): gmr8503 DOI: https://doi.org/10.4238/gmr.15038503
Cite this Article:
Y.Y. Cao, Z.B. Li, Y.Y. Cao, Z.B. Li (2016). Genetic diversity and population structure of Fenneropenaeus penicillatus determined by mitochondrial DNA analyses. Genet. Mol. Res. 15(3): gmr8503. https://doi.org/10.4238/gmr.15038503
2,415 views

Abstract

Fenneropenaeus penicillatus is a widely distributed economically and ecologically important shrimp species, which is endangered in China. Sequence analysis of 16s rRNA and control region (CR) fragments from mitochondrial DNA was conducted to obtain information on genetic diversity and population structure. Individuals from 12 wild F. penicillatus populations located along the southeast coast of China were used. Polymerase chain reaction (PCR) fragments of the CR gene revealed high genetic diversity among the 12 populations; however, PCR fragments of the 16s rRNA gene revealed very low genetic diversity in the Hainan (HN) and Ningde (ND) populations and high genetic diversity in the DS, BH, PT, XM, and SZ populations. Data obtained from the CR and 16s rRNA genes suggested that high genetic differentiation exists among the 12 populations, which is mainly due to the high genetic differentiation between HN and all other 11 populations. These results may be useful for further sustainable management and utilization of this species.

Fenneropenaeus penicillatus is a widely distributed economically and ecologically important shrimp species, which is endangered in China. Sequence analysis of 16s rRNA and control region (CR) fragments from mitochondrial DNA was conducted to obtain information on genetic diversity and population structure. Individuals from 12 wild F. penicillatus populations located along the southeast coast of China were used. Polymerase chain reaction (PCR) fragments of the CR gene revealed high genetic diversity among the 12 populations; however, PCR fragments of the 16s rRNA gene revealed very low genetic diversity in the Hainan (HN) and Ningde (ND) populations and high genetic diversity in the DS, BH, PT, XM, and SZ populations. Data obtained from the CR and 16s rRNA genes suggested that high genetic differentiation exists among the 12 populations, which is mainly due to the high genetic differentiation between HN and all other 11 populations. These results may be useful for further sustainable management and utilization of this species.

About the Authors