Research Article

Characterization and molecular epidemiology of extensively prevalent nosocomial isolates of drug-resistant Acinetobacter spp

Abstract

Acinetobacter sp isolates deserve special attention once they have emerged globally in healthcare institutions because they display numerous intrinsic and acquired drug-resistance mechanisms. This study assessed the antibiotic susceptibility profile, the presence of the genetic marker blaOXA-23, and the clonal relationship among 34 nosocomial isolates of Acinetobacter spp obtained at a hospital in southeastern Brazil. Antibiotic sensitivity analysis was performed by the standard disc-diffusion method. All isolates were found to be extensively resistant to several drugs, but sensitive to polymyxin B. A polymerase chain reaction (PCR) assay was used to detect the blaOXA-23 gene, which is associated with carbapenem resistance. The genetic profile and the clonal relationship among isolates were analyzed via enterobacterial repetitive intergenic consensus (ERIC)-PCR. The Acinetobacter spp were divided into four groups with 22 distinct genetic subgroups. ERIC-PCR analysis revealed the genetic diversity among isolates, which, despite having a heterogeneous profile, displayed 100% clonality among 56% (19/34) of them.

Acinetobacter sp isolates deserve special attention once they have emerged globally in healthcare institutions because they display numerous intrinsic and acquired drug-resistance mechanisms. This study assessed the antibiotic susceptibility profile, the presence of the genetic marker blaOXA-23, and the clonal relationship among 34 nosocomial isolates of Acinetobacter spp obtained at a hospital in southeastern Brazil. Antibiotic sensitivity analysis was performed by the standard disc-diffusion method. All isolates were found to be extensively resistant to several drugs, but sensitive to polymyxin B. A polymerase chain reaction (PCR) assay was used to detect the blaOXA-23 gene, which is associated with carbapenem resistance. The genetic profile and the clonal relationship among isolates were analyzed via enterobacterial repetitive intergenic consensus (ERIC)-PCR. The Acinetobacter spp were divided into four groups with 22 distinct genetic subgroups. ERIC-PCR analysis revealed the genetic diversity among isolates, which, despite having a heterogeneous profile, displayed 100% clonality among 56% (19/34) of them.